Ⅰ 樹脂字的製作方法
1.在溫度環境較低的時候,最好A料需要預熱到50-60度後才可配比,這是為了保證容易操作版和達到最佳效果權。
2.混合AB兩種料的時候注意是重量比(非體積比),且配比要精確,否則出來的可能就是廢物了。這種材料不能重復使用的。
3.攪拌器具,稱量器具,混合容器等需乾燥潔凈。
4.攪拌的時候需要一個方向攪拌(不要正反兩個方向都攪),盡量緩慢,不要劇烈動作,這樣是為了避免產生過多的氣泡。
5.攪拌均勻後靜置4-5分鍾後進行澆鑄。
6.澆鑄時候最好沿著一個邊角緩慢讓樹脂混合物流入,不可猛灌,這樣也是為了防止氣泡的出現。
7,樹脂字的LED光源一定要選好。
Ⅱ 加固材料性能檢測常用試驗標准有哪些
GB50550-2010《建築結構加固工程施工質量驗收規范》附錄J,測定膠耐濕熱老化性能。
GB/T3354《定向纖維增強塑料拉伸性能性能試驗方法》,測定碳纖維、玻璃纖維的抗拉強度、受拉彈性模量及伸長率。
GB/T2568-1995《樹脂澆鑄體拉伸性能試驗方法》,測定膠本體的抗拉強度、受拉彈性模量及伸長率。
GB/T2569-1995《樹脂澆鑄體壓縮性能試驗方法》,測定膠本體的壓縮強度、受壓彈性模量。
GB/T6329-1996《膠粘劑對接接頭拉伸強度試驗方法》,測定正拉粘接強度。
GB/T7124-1986《膠粘劑拉伸剪切強度試驗方法》,測定剪切粘接強度。
GJB94-1986《膠粘劑不均勻扯離強度試驗方法》,測定粘接扯離強度。
GB/T6328-1999《膠粘劑剪切沖擊強度試驗方法》,測定粘接沖擊強度。
GB/T2570-1995《樹脂澆鑄體彎曲性能試驗方法》,測定膠本體的抗彎強度。
GB7749-87《膠粘劑劈裂強度試驗方法》,測定膠本體劈裂抗拉強度。
GB50367-2006《混凝土結構加固設計規范》附錄F,測定膠與混凝土的粘接強度
Ⅲ 請問什麼是環氧樹脂澆注體
環氧樹脂加上環氧樹脂固化劑按照一定的比例混合均勻,然後倒入固定的模具中,即可製作成環氧樹脂澆注體。在該體系中可加入一些其它的添加劑,填充劑之類的,按需選擇。之後就是固化形式的決定了。
固化形式則是兩種選擇,常溫與中高溫,根據你所需要的澆注體的固化條件來選擇。一般來說,加熱都是可以完成固化的,但某些固化劑在中高溫時會有變色之類的現象發生,所以選擇要慎之,事先了解好澆注體系的性能。
Ⅳ 纖維增強塑料樹脂有哪幾項檢測和檢測的標準是什麼!
3 樹脂 固體含量 0302 GB/T7193.3-1987《不飽和聚酯樹脂 固體含量測定方法》
4 樹脂 80℃下反應活性 0302 GB/T7193.4-1987《不飽和聚酯樹脂 80℃下反應活性測定方法》
5 樹脂 80℃熱穩定性 0302 GB/T7193.5-1987《不飽和聚酯樹脂 80℃熱穩定性測定方法》
6 樹脂 25℃凝膠時間 0302 GB/T7193.6-1987《不飽和聚酯樹脂 25℃凝膠時間測定方法》
7 樹脂 澆鑄體耐鹼性 0302 GB/T7194-1987《不飽和聚酯樹脂 澆鑄體耐鹼性測定方法》
8 樹脂 澆鑄體拉伸 0302 GB/T2568-1995《樹脂澆鑄體拉伸性能試驗方法》
9 樹脂 澆鑄體壓縮 0302 GB/T2569-1995《樹脂澆鑄體壓縮性能試驗方法》
10 樹脂 澆鑄體彎曲 0302 GB/T2570-1995《樹脂澆鑄體彎曲性能試驗方法》
11 樹脂 澆鑄體沖擊 0302 GB/T2571-1995《樹脂澆鑄體沖擊試驗方法》
12 預浸料樹脂含量 0302 JC/T780-2004《預浸料樹脂含量試驗方法》
13 預浸料揮發份含量 0302 JC/T776-2004《預浸料揮發分含量試驗方法》
14 預浸料凝膠時間 0302 JC/T774-2004《預浸料凝膠時間試驗方法》
15 預浸料流動度 0302 JC/T775-2004《預浸料樹脂流動度試驗方法》
16 纖維增強塑料拉伸 0302 GB/T1447-2005《纖維增強塑料拉伸性能試驗方法》
17 纖維增強塑料壓縮 0302 GB/T1448-2005《纖維增強塑料壓縮性能試驗方法》
18 纖維增強塑料彎曲 0302 GB/T1449-2005《纖維增強塑料彎曲性能試驗方法》
19 纖維增強塑料層間剪切 0302 GB/T1450.1-2005《纖維增強塑料層間剪切強度試驗方法》
20 纖維增強塑料沖壓式剪切 0302 GB/T1450.2-2005《纖維增強塑料沖壓式剪切強度試驗方法》
21 纖維增強塑料沖擊韌性 0302 GB/T1451-2005《纖維增強塑料簡支梁式沖擊韌性試驗方法》
22 纖維增強塑料線膨脹系數 0302 GB/T2572-2005《纖維增強塑料平均線膨脹系數試驗方法》
23 纖維增強塑料導熱系數 0302 GB/T3139-2005《纖維增強塑料導熱系數試驗方法》
24 纖維增強塑料平均比熱容 0302 GB/T3140-2005《纖維增強塑料平均比熱容試驗方法》
25 纖維增強塑料熱變形溫度 0302 GB/T1634.2-2004《塑料 負荷變形溫度的測定 第2部分塑料、硬橡膠和長纖增強復合材料》
Ⅳ 環氧樹脂混凝土配合比的比例
環氧樹脂混凝土配合比的比例:
一型:環乳樹脂:100二。丁曲:12乙二膠:10。丙酮:9。水泥:250。砂:200(漸洗鯨曬,烘乾)。碎石:300(粒徑5-16mm洗鯨曬,烘乾)。
二型:環氧樹脂:100。二了曲:10。乙二齡:8。丙酮:11。水泥:250。砂:150。碎石:280。
註:
1、計受以g為單位。
2、要求計准確。
3、此為夏季氣溪30℃左右的配合比,如氣溪偏差較大,可調整二丁酯,乙二胺,丙酮的含。配製方法:嚴格按照質量比,先倒入環氧樹脂,再倒入二丁面,分致次倒入攪拌均勻。在教次倒入乙二胺攪拌均勻,依次分別側入丙酮,水泥,砂,碎石攪均勻,時間越短越好,保證其流動性。
安全注意事項:禁用塑料容器拌合;禁煙,避大;操作過程中必須佩藏手套及防護早。
(5)樹脂澆鑄體實驗擴展閱讀:
環氧樹脂具有仲羥基和環氧基,仲羥基可以與異氰酸酯反應。環氧樹脂作為多元醇直接加入聚氨酯膠黏劑含羥基的組分中,使用此方法只有羥基參加反應,環氧基未能反應。
普通液態環氧樹脂外觀:用酸性樹脂的、羧基,使環氧開環,再與聚氨酯膠黏劑中的異氰酸酯反應。
還可以將環氧樹脂溶解於乙酸乙酯中,添加磷酸加溫反應,其加成物添加到聚氨酯膠黏劑中;膠的初黏;耐熱以及水解穩定性等都能提高還可用醇胺或胺反應生成多元醇,在加成物中有叔氮原子的存在,可加速NCO反應。
用環氧樹脂作多羥基組分結合了聚氨酯與環氧樹脂的優點,具有較好的粘接強度和耐化學性能,製造聚氨酯膠黏劑使用的環氧樹脂一般採用EP-12、EP-13、EP-16和EP-20等品種。
Ⅵ 您好,我最近在實驗室想製作環氧樹脂的澆鑄體,可是我用的是普通玻璃模具,在脫模時相當困難,想向您請教
玻璃上塗點硅油,也不一定用玻璃做模具,我在實驗室做小試件用鋁薄,用鋁薄固化後很容易把鋁薄撕掉,撕不掉可以用鹽酸泡一下,模具就全沒了。
Ⅶ 如何加速使液體樹脂快速凝固且不變形無氣泡
配方工藝調整下,固化用量很關鍵
不飽和聚酯樹脂中阻聚劑及其他添加劑的影響
為了不飽和聚酯樹脂的穩定,常在其中加入阻聚劑或緩聚劑。這是一種能與鏈自由基反應形成非自由基或不能再引發的低活性自由基,使交聯固化速率降低為零的物質。因此,低反應活性的樹脂有可能因為其中加入的阻聚劑量很少而顯得反應活性很高,而高反應活性的樹脂也可能因其中加入了過量的阻聚劑而變得不甚活潑。另外其他添加劑例如:阻燃劑、色漿、低收縮劑、各種填料的加入,引入了磷、鹵、金屬離子或其他因素,都會影響樹脂交鏈反應活性。
(6)固化劑、阻聚劑用量的影響
用JX-196樹脂作固化實驗,不同固化劑、阻聚劑用量的影響如下:
組號 BPO TBC HQ N-Cu 凝膠時間min 放熱峰溫度℃ 固化時間min
1 0.3 0 0 0 3.7 178 1.7
2 0.3 0.02 0.07 0.07 12.9 143 3.05
3 0.3 0.02 0.07 0.02 12.3 167 2.7
4 0.3 0.04 0.04 0.04 11.3 164 2.6
5 0.6 0.02 0.07 0.07 8.3 181 1.7
6 0.6 0.02 0.07 0.02 6.4 184 1.5
7 0.6 0.04 0.04 0.04 7.6 185 1.3
8 0.9 0.04 0.04 0.04 4.2 191 1.2
從上述實驗可以看出:三組不同固化劑用量固化結果形成三個階梯,用量越大,固化越快,放熱峰越高。不同的阻聚劑和不同的用量固化效果也為不相同。因此在樹脂製造和使用過程中,掌握好阻聚劑、固化劑的合理匹配十分重要。
2 不飽和聚酯樹脂固化網路結構分析
2.1不飽和聚酯樹脂交聯網路結構
不飽和聚酯中的雙鍵與交聯劑中的雙鍵聚合形成不溶不熔的交聯網路結構,網路中含有兩種聚合物分子鏈結構。網路主體由不飽和聚酯分子鏈的無規線團組成,苯乙烯共聚分子鏈穿插其中,將不飽和聚酯分子鏈連接和固定起來,形成一個巨大的網。在網中不飽和聚酯分子鏈平均分子量為1000-3000。連接在不飽和聚酯分子鏈間苯乙烯分子鏈的長度為1-3個,而從某個引發點開始,聚酯分子 → 苯乙烯 鏈 → 聚酯分子 → 苯乙烯鏈 → 這樣的連續重復,最多也只有7-8個交替,這樣苯乙烯共聚物分子鏈平均分子量可達8000-14000。整個網路結構平均分子量為10000-30000。如果網路分子量小於10000會直接影響製品的力學性能 ,如強度、彈性和韌性等。
2.2 不飽和聚酯樹脂交聯網路的長壽命自由基
不飽和聚酯樹脂交聯網路在固化過程中,不飽和聚酯和苯乙烯各自雙鍵的聚合進程及殘留率的變化具有一定的特色。實驗表明不管聚酯樹脂交聯網路完善與否,都會產生一些自由基無法終止的空間位阻的死點,形成長壽命自由基。這些長壽命自由基又只會存在於不飽和聚酯鏈上,而不會出現在只有兩個官能度的小分子的交聯劑上。由於長壽命自由基的存在,不飽和聚酯樹脂固化後交聯反應仍能進行。溫度的升高,特別是接近樹脂玻璃化溫度時,分子的可動性大大增加,長壽命自由基得以活動,可以和殘余的交聯劑單體繼續進行交聯反應,這就是樹脂後固化可以提高固化度的原因。
2.3 聚酯樹脂網路結構中的微相分離現象
實驗分析表明,在交聯良好的不飽和聚酯樹脂中也存在著一種微相分離結構。這種微相分離很可能是在聚合過程中,由於不同分子鏈的相互排斥作用,聚酯鏈和交聯劑以某種方式分別斂集在一起而產生了分相。固化初期的放熱峰使兩相相互溶合在一起,這是不飽和聚酯樹脂形成均勻網路的重要條件。但放熱峰後相分離的過程又在隨著時間的延續不斷進行和發展。低溫的處理可加速該微相分離的發展,相反,熱處理可以消除這種微相分離。當溫度升高時首先可以使斂集較松的分相區破壞,溫度再升高又可使斂集較緊的分相區破壞,最後,玻璃化溫度以上的高溫就可使所有分相區消除。相區一經破壞,再重新聚集分相就不象聚合時單體運動、排列自如,而要受到網路的限制。而在兩相玻璃化溫度以上的高溫處理導致在網路均勻狀態下進一步的聚合和交聯,可從根本上消除這種微相分離。
微相分離現象的存在對材料的性能有相當大的影響。實驗表明,同一條件下聚酯澆鑄體樣品,25℃室溫固化30天,固化度達到90.2%,其巴柯硬度為38.5。而經高溫處理後,雖然固化度提高不大為92.6%,但由於消除了相分離的影響,巴柯硬度竟達到44.4。可見微相分離對樹脂的硬度影響很大。同時也可以理解高溫後處理試樣剛度大大超過室溫固化試樣的原因所在。因此,我們要十分強調不飽和樹脂玻璃鋼製品,尤其是防腐蝕、食品用等玻璃鋼設備,一定要經過高溫後處理,消除微相分離現象再投入使用。
2.4交聯劑對網路結構的影響
上面已經說到,兩種單體交聯固化時,競聚率在影響不飽和聚酯樹交聯網路的均勻性方面起著關鍵性的作用。因此在選擇交聯劑時必須注意競聚率,使交聯劑與不飽和聚酯能很好的交替共聚,形成均勻的網路結構。此外交聯劑分子量要小一點,官能度要低,與聚酯要有優良的相容*聯劑用量的選擇上,一般說來交聯劑用量過少,不飽和聚酯的雙鍵不能完全反應,用量過多又必然形成大量的塑性鏈,這兩種情況都不能使樹脂形成均勻緊密地網路。實驗表明,交聯劑苯乙烯的用量通常為35%左右,即與聚酯雙鍵之比在1:1.6-2.4之間。
2.5不飽和聚酯分子量對交聯網路的影響
聚酯分子量越大,分子鏈越長,分子量越小,分子鏈越短。實驗表明,隨著聚酯分子量的增加,形成完整網路的概率也越大,分子量小,形成完整網路就較困難。隨著分子量增加,網路中端基減少,節點增加,耐熱性越好。因此分子量大的樹脂耐熱性能較高。
2.6 不飽和聚酯分子結構對網路性能的影響
不飽和聚酯交聯點間分子結構對網路熱性能有直接的影響。不飽和聚酯分子結構單元由雙鍵、酯鍵、醚鍵、亞甲撐、芳環類等集團組成。一般情況下,雙鍵之間的鏈節越短,樹脂的熱變性溫度就越高。雙鍵間鏈節延長會使熱變性溫度降低。
彎曲強度是材料拉伸強度和抗壓強度的綜合體現,是材料性能重要的指標。樹脂的交聯密度越高,承受負荷的分子鏈越多,彎曲強度也應越高。但有時實際上卻非如此。這是因為樹脂網路是極不均勻的,而且均勻*聯密度的增加而下降。因此在外力的作用下,各分子鏈的受力也不均勻。再有,高交聯密度樹脂其分子張緊而難以運動,變性量很小,在外力作用下寧折不彎。可見高交聯樹脂由於均勻性差,分子鏈難以鬆弛雙重原因會造成他們彎曲強度不高。一個有高溫使用價值的樹脂,其理想的分子結構應該是在雙鍵間主鏈中引入一連串非對稱的芳雜環結構,最好能帶有少量的極性鍵。
2.7 引發劑及固化條件對樹脂網路結構的影響
(1)引發劑種類不同 ,樹脂交聯固化性能也不同。以過氧化環己酮(HCH)/環烷酸鈷(CoN)和過氧化苯甲醯(BPO)/二甲基苯胺(DMA)兩種氧化-還原體系為例進行固化實驗可以看到:以BPO/DMA體系引發以苯乙烯為交聯劑的樹脂,固化達80h的過程中用丙酮萃取的百分率緩慢下降至24.9%,而以HCH/CoN體系引發同樣以苯乙烯為交聯劑的樹脂固化至4.5h後即下降至24.5%,可見以HCH/CoN體系引發固化不飽和聚酯樹脂要比BPO/DMA體系引發更為有效。同時發現,以HCH/CoN引發體系固化的樹脂網路中長壽命自由基的數量10個月後仍然不低於固化80天後的數量。相比之下,以BPO/DMA引發體系固化的樹脂網路中長壽命自由基的數量卻很快消失殆盡了,充分說明該體系對樹脂網路的形成有很大影響。尤其固化後期要達到較高的固化程度比較困難。
(2)固化條件不同樹脂固化網路的性能也將有很大差異。以天津巨星公司JX-196樹脂為例:取JX-196樹脂,加入HCH/CoN引發體系後分成兩份,分別置於25℃恆溫水浴和25℃空氣浴中,記錄下每一試樣在固化過程中溫度的變化情況。可以看到,在固化前期樹脂的溫度情況水浴與
空氣浴基本一致,但是在凝膠以後,在空氣浴中固化樣品放熱峰較高,而在水浴中固化樣品放熱峰溫度比前者要低20-30℃。再將兩種樣品進行後固化處理以後測定,在空氣浴中固化的試樣各種性能參數都明顯優於在水浴中固化的試樣。這說明同一樹脂在經歷不同固化條件時,起始的固化度有明顯差別。雖然只要有足夠的引發劑存在並經高溫後處理,最終固化度將趨於一致,可是固化性能卻有顯著差別。這就是說,初始的固化條件奠定了交聯網路結構基礎,因而也就在相當大的程度上確定了材料的物性。所以在固化工藝中有一種所謂成夾生飯無法再煮熟之說。樹脂固化以後分子就難以穿插運動了,因此影響網路結構的關鍵時刻是凝膠時刻的一段時間,在這段時間,為了保證樹脂網路結構的均勻性和連續性,要求交聯劑繼續滲透和溶脹,而此時出現的放熱峰起到了這種作用,雖然交聯產物最終固化度未見得更高,但性能卻要比無放熱峰者為好。
JX-196樹脂在空氣浴與水浴中固化性能比較
凝膠時間min 放熱峰溫度℃ 巴柯硬度 彎曲強度KPa
空氣浴℃ 9.7 184 43 211
水浴℃ 11.6 163 30 188
Ⅷ 實驗室制備酚醛樹脂的方法是:將適量反應物放入一隻試管中,振盪,搖勻後,塞緊橡膠塞,水浴加熱數分鍾
酚醛樹脂的實驗室製法
在大試管中加入2.5克苯酚和2.5毫升40%甲醛溶液,再加入1毫升濃鹽版酸(作為催化劑),此時看權不到明顯現象。把試管口塞上插有長玻璃管
(>30厘米)的單孔塞,再把試管放進沸水浴中加熱(沸水浴應為100℃恆溫加熱裝置),如圖。混合液開始沸騰時,表示反應正在進行(反應放熱),
沸騰熄止時,表示反應已完成。繼續加熱約10分鍾,以利酚醛樹脂和水溶液充分分層,上層為水,下層為酚醛樹脂,冷卻後顯粉紅色(原因:苯酚被氧化生成醌類
物質)。反應裝置中的長玻璃管對揮發的反應物起冷凝迴流作用。在這個實驗中,所用苯酚過量,並用酸作催化劑,產物是線型高分子樹脂;如甲醛溶液過量時(如
2.5克苯酚配3—4毫升40%甲醛溶液)且用氨水作催化劑時,產物則是體型高分子樹脂(參看縮聚反應)。實驗後的反應容器,需用酒精浸泡一些時間後,才
易用水洗凈。製得的酚醛樹脂有體型和線型。
所以應該是把試管口塞上插有長玻璃管(>30厘米)的單孔塞,而不是塞緊橡膠塞,這樣加熱會爆炸的
Ⅸ 樹脂砂鑄造的原理分析
鑄件粘砂是因為塗料沒有有效起到阻擋隔離作用,或塗料與高溫金屬液體發生化學反應內。
1.塗料附著力差容:填砂震動時造成塗料剝落,引起鑄件粘砂,
2.塗料膨脹系數大:與高溫金屬液體接觸時塗料受熱體積膨脹脫離鑄型導致鑄件粘砂。
3.高溫液體金屬被氧化與塗料和鑄型發生化學反應生成金屬氧化物,對塗料和型砂都有極強的粘結性,能夠將型砂牢固粘附在鑄件表面上形成一系列的低熔點化合物〔在鑄件厚壁及轉角處等,低熔點物更多,粘砂層更後),造成鑄件粘砂,有時雖未產生粘砂,但在鑄件表面粘附上一層難以清除的塗料,及產生粘灰。
鑄件砂眼:
1.鑄型內有掉入的砂子。
2,.塗料強度低,耐火差,經不住高溫金屬液體的沖刷,型砂被捲入鑄件。
鑄件氣孔:產生的原因很多,最常見的就是因為鑄型中存在較多發氣量大的物質,發氣速度快,塗料或被砂透氣性差,氣體未及時排除所致。