㈠ 水處理中tn,tp是什麼
水處理中的TN和TP分別指總氮和總磷。
以下是對兩者的
一、總氮
1. 定義:總氮是水體中所有氮元素形態的總和。
2. 影響:在水處理中,總氮的含量是一個重要指標,因為它與水質富營養化問題密切相關。過高的總氮含量可能導致藻類過度生長,從而影響水質。
3. 去除方法:在污水處理過程中,通過生物脫氮等技術去除水中的氨氮和硝酸鹽氮,以降低總氮含量。
二、總磷
1. 定義:總磷是指水體中所有磷元素形態的總和。
2. 影響:磷是植物生長的重要元素,但過量的磷會導致水體中藻類過度繁殖,消耗水中的溶解氧,影響其他水生生物的生存。
3. 控制標准:為了控制水體的富營養化,許多國家和地區都對水體中的總磷含量設定了嚴格的控制標准。
4. 去除方法:在污水處理過程中,通過化學沉澱、生物除磷等方法去除水中的磷。
因此,在水處理過程中,對TN和TP的監測和控制至關重要,它們的高低不僅影響水質,還與水生態系統的健康息息相關。通過有效的處理方法,可以確保水體中的TN和TP含量符合標准,從而保護水環境。
㈡ 污水廠碳源不足,總氮(TN)不達標怎麼辦
如果污水廠碳源不足,導致總氮(TN)無法達到排放標准,可以考慮以下幾種方法來解決問題:
添加外部碳源:可以向污水處理系統中添加外部碳源,如甲醇、乙醇、乙酸鈉等有機物,以提供額外的碳源供微生物利用。這些碳源可以促進硝化和反硝化過程,有助於將氨氮轉化為氮氣,從而降低總氮含量。添加外部碳源需要仔細控制投加量,避免過量添加導致其他問題。
改變操作條件:可以調整污水處理系統的操作條件,以優化氮的去除效率。例如,增加曝氣量和提高混合液溶氧濃度,有利於氨氮通過硝化過程轉化為硝態氮。此外,調整曝氣時間、溫度和pH值等參數,也可以影響氮的去除效果。
進行工藝改進:考慮對污水處理工藝進行改進,引入更適合氮素去除的工藝單元。常見的改進方法包括增加硝化池、反硝化池或加強生物脫氮工藝察耐悉等。這些改進可以提高系統對氮的處理能力,使總氮達到排放標准。
優化污水源頭控制:通過加強污水源頭的控制,減少進入污水廠的總氮負荷。可以通過改善產業和生活污水的前處理措施,減少氮源的輸入量。例如,加強工業廢水的預處理,推行低氮排放標准,提高生活污水的分流和預處理效果等。
考慮外部處理:如果以上措施仍然無法解決總氮超標的問題,可以考慮將污水引導到其他污水處理廠或採用其他附加處理技術,如深度氮磷去除工藝、化學沉澱、吸附劑處理等,以進一步降低總氮含量。
綜合考慮實際情況,可以採取單一或綜合應用上述方畝跡法,以確保污水廠的總氮排放達到標准要求。在實施過程中,需要進行嚴密的監測和控制,確保處理效果和環境安全。同時,根據具體情況,可以咨詢專業的環境工程師或顧問,制定適合的解決方案。
如果水天藍環保的回答對您有所幫助,希望能夠獲得您的採納!感敗乎謝支持!
㈢ 總氮的去除方法及原理
1、廢水中總氮的構成
總氮元素主要由氨氮、有機氮、硝態氮、亞硝態氮以及氮氧化合物組成,其中氨氮主要來自於氨水以及諸如氯化銨等無機物。有機氮主要來自於一些有機物中的含氮基團,比如有機胺類等。氮氧化合物諸如一氧化氮以及二氧化氮等是有毒氣體,由於狀態不穩定,一般很少存在。硝態氮在自然界中比較穩定,且含量較高,比如國防工業ZhaYao製造過程中大量用◇◇作為原料,機械化學等工業使用大量與◇◇相關的原材料作為氧化劑,同時很多污水通過前期生化以及硝化以後也含有大量的◇◇,因為硝態氮十分穩定,且極易溶解於水,因此污染十分嚴重,極易擴散。
2、氨氮的去除辦法
含氨氮廢水目前市場上技術已經非常成熟,一般通過以下幾種辦法去除。
第一,折點加氯氧化法,通過加入次◇◇或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。其反應方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二,利用微生物硝化和反硝化去除廢水中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞◇◇和◇◇,然後再進行反硝化,將◇◇轉化為氮氣。其反應原理圖如下所示:
2NH3 + 3O2 → HNO2 + H2O + 能量(亞硝化作用)
2HNO2 + O2 → 2HNO3 + 能量(硝化作用)
HNO3 + CH3OH → N2 + CO2 + H2O + 能量(反硝化作用)
3、有機氮的去除辦法
在一些廢水中含有有機氮,有機氮大多通過微生物去除。在轉化中,主要包括氨化、硝化和反硝化三個階段。在氨化過程中,水中有機氮在微生物作用下轉化為氨氮。硝化過程中,首先在亞硝化桿菌的作用下,氨氮轉化為亞◇◇氮,然後在硝化桿菌作用下,亞◇◇氮進一步被氧化成◇◇氮。反硝化過程中,◇◇氮轉化為氮氣,釋放到空氣中,也正是在這個過程中,水中的氮被徹底去除了。
4、硝態氮的去除辦法
硝態氮主要是指◇◇根離子,目前有採用離子交換、膜滲透、吸附以及生物脫氮的方法。其中離子交換法、膜滲透法以及吸附法都只是◇◇根離子的濃縮與轉移,無法真正去除總氮,濃縮以後的◇◇根廢液需要進一步處理。
在生物脫氮中,主要是指◇◇根離子通過反硝化細菌降解轉化為氮氣的過程。在傳統的生化方法中,需要極大地佔地面積,而且由於微生物密度低,微生物脫氮效率很低,而且出水不清澈,有懸浮物,不耐毒性物質。
蘇州湛清環保科技有限公司新設計一種高效反硝化生物濾池裝置,經過特殊結構設計的高效反硝化生物濾池,專為工業廢水處理研發,適應工業廢水高鹽分、高毒性、高硝氮、波動大的水質特點。
該技術具有以下特點:
脫氮效率高——正常運行脫氮負荷2kg N/m³·d,出水總氮穩定達標
佔地面積小——10t/h的處理量,降低20mg/L總氮,佔地面積僅3㎡
易操作維護——全自動控制,無需更換填料,反沖洗水量少、頻率低
污泥產量少——反沖洗排出的少量微生物迴流至生化池繼續分解
運行成本低——去除20 mg/L的總氮,噸水成本約0.7元
㈣ 污水處理總氮超標怎麼辦
水中的總氮含量是衡量水質的重要指標之一。其測定有助於評價水體被污染和自凈狀況。地表水中氮、磷物質超標時,微生物大量繁殖,浮游生物生長旺盛,出現富營養化狀態。
第一、折點加氯氧化法,通過加入次氯酸鈉或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。其反應方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二、利用微生物硝化和反硝化去除廢水中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞硝酸鹽和硝酸鹽,然後再進行反硝化,將硝酸鹽轉化為氮氣。其反應原理結構式如下所示:
2NH3+3O2→HNO2+H2O+能量(亞硝化作用)
2HNO2+O2→ 2HNO3+能量(硝化作用)
HNO3+CH3OH→N2 + CO2+H2O+能量(反硝化作用)
註:總氮,簡稱為TN,水中的總氮含量是衡量水質的重要指標之一。總氮的定義是水中各種形態無機和有機氮的總量。包括NO3-、NO2-和NH4+等無機氮和蛋白質、氨基酸和有機胺等有機氮,以每升水含氮毫克數計算。常被用來表示水體受營養物質污染的程度。
第一、折點加氯氧化法,通過加入次氯酸鈉或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。其反應方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二、利用微生物硝化和反硝化去除廢水中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞硝酸鹽和硝酸鹽,然後再進行反硝化,將硝酸鹽轉化為氮氣。其反應原理結構式如下所示:
2NH3+3O2→HNO2+H2O+能量(亞硝化作用)
2HNO2+O2→ 2HNO3+能量(硝化作用)
HNO3+CH3OH→N2 + CO2+H2O+能量(反硝化作用)
註:總氮,簡稱為TN,水中的總氮含量是衡量水質的重要指標之一。總氮的定義是水中各種形態無機和有機氮的總量。包括NO3-、NO2-和NH4+等無機氮和蛋白質、氨基酸和有機胺等有機氮,以每升水含氮毫克數計算。常被用來表示水體受營養物質污染的程度。
水中的總氮含量是衡量水質的重要指標之一。其測定有助於評價水體被污
㈤ 污水處理中氨氮總氮都很高怎麼處理
今天希潔君來科普一下吧~
》答案: 氨氮是指水中以游離氨(NH3)和銨離子(NH4)形式存在的氮。 動物性有機物的含氮量一般較植物性有機物為高。同時,人畜糞便中含氮有機物很不穩定,容易分解成氨。
》答案: 總氮,簡稱為TN,水中的總氮含量是衡量水質的重要指標之一。總氮的定義是水中各種形態無機和有機氮的總量。
》先測試總氮和氨氮的濃度:
1)如果濃度值偏差較大,總氮偏高
利用某些生物菌種也能對總氮和氨氮的降解起到一定的作用,但是日常的維護需求比較大,一般需要長期安排技術人員在現場操作。
2)如果濃度差值不大
可以直接用 氨氮去除劑 處理,這樣氨氮處理下來了,總氮也會隨之降低。
——責任編輯:希潔環保技術部
㈥ 廢水中總氮該怎麼去除
首先,要先了解總氮的構成,總氮包括有機氮、氨氮、硝態氮,組內成成分不同,處理方式也容不同,總體分為物化法和生化法。
對於不同種類的廢水,通常會應用不同的物化法,例如氨氮廢水,通常會採用氨氮去除劑,折點加氯,將氨氮以氮氣的形式脫離出廢水;有機氮廢水,則需通過高級氧化法。但是,大多數物化方法是不能完全將總氮處理到較低的標准。
生化法多以活性污泥為主,適用性也較強,可以處理低濃度廢水。生物脫氮主要包括氨化、硝化和反硝化三個主要的生化過程。這種方法水力停留時間短,運行成本低。但是由於大部分使用此工藝的系統反硝化環節受限,導致出水氨氮雖然下降,硝氮卻提高了,最終總氮依舊超標。
如上所述,活性污泥法不能將廢水中的總氮完全去除,主要是因為廢水中硝態氮的超標,由於迴流比數值偏離、缺氧段溶解氧含量較高等因素導致。那麼在反硝化過程即可採用強化HDN高效脫氮設備,通過對填料、結構、布水的優化,提高了負荷,一步消耗硝態氮,同時還能降低COD,是出水水質達標,實現廢水中總氮的去除。