① 電鍍退洗廢水怎麼處理就是洗去鍍件表面鍍上去的鎳和銅的廢水。
建議樓主:
1.確定一下廢水中各重金屬的含量.確定有兩種方法:第一是直接檢測,不過需要有相應的設備和儀器,如原子吸收光譜等,還有一些攜帶型的試紙等.第二,如果沒有相應的條件,則可根據退鍍件表面的厚度/含量及產品的數量除以水量粗略的估算一下各重金屬的濃度.
2.如果濃度非常高,有回收利用價值,則回收.或賣給有資質回收的環保公司(需要按照危險廢棄物處理處置程序和規范進行,儲存/轉移等要接收環保主管部門的監督)
3.如果含量打不到回收標准,則需要處理達標後再排放.處理的方法比較多,目前最經濟實用的還是化學沉澱法,即將廢水調節PH值到10-11左右(鎳的最佳沉澱條件為PH=9左右,銅的最佳沉澱條件為.PH=10.5左右,也即條件允許的話可以分步沉澱,這樣去除效果會更好),通過生成不溶於水的氫氧化鎳或氫氧化銅沉澱,再添加部分混凝劑和絮凝劑形成較大的污泥顆粒後在沉澱池沉澱,沉澱好的污泥通過泥水分離設備分離後形成泥餅而去除.
4.如果廢水中重金屬含量很高,則可能需要多級沉澱,即沉澱一次後將沉澱完但不達標的廢水進行再次沉澱,這樣可提高達標率.
當然了,以上說的是簡單的處理.廢水處理是一個工程,也是一門科學,涉及到許多方面,包括池體的結構和尺寸,設備的選型,工藝的選擇等等,需要多方面考慮,
以上,希望能幫到你.
另外,關於退鍍廢水的顏色呈棕黃色的問題,主要看你用的退鍍劑是什麼?是鹽酸還硝酸還是其他的,或者混合的,具體的顏色來源需要從源頭分析.比如:通常,銅離子Cu2+在水溶液中實際上是以水合離子[Cu(H2O)4]2+的形式存在的,水合銅離子呈藍色,所以我們常見的銅鹽溶液大多呈藍色。而在氯化銅的溶液中,不僅有水合銅離子[Cu(H2O)4]2+,還有氯離子Cl-與銅離子結合形成的四氯合銅絡離子[CuCl4]2-,該離子的顏色為黃色。
.在硝酸跟銅的反應中,稀硝酸與銅反應所得的溶液呈藍色,而濃硝酸與銅反應所得溶液呈綠色。這是因為,濃硝酸與銅反應時,產生大量的二氧化氮氣體,二氧化氮溶解在溶液中呈黃色,二氧化氮的黃色跟水合銅離子的藍色混合就出現了我們看到的綠色。
同時,各種離子的顏色是直接導致廢水顏色的直接原因.例如:一價銅 離子,紅色,二價的銅藍色,二價亞鐵離子,綠色,鐵離子黃色
② 銅鎳廢水處理後的污泥是什麼顏色
1 電鍍污泥的特點及其危害性
多數的電鍍廢水處理方法都要產生污泥,而化學沉澱法是產生污泥的主要來源。有些方法,如離子交換法和活性炭法雖不直接產生污泥,但在方法的某些輔助環節,如再生液的處理也要產生污泥 。由於化學法在國內外都被作為一種主要的處理方法,所以電鍍污泥的形勢是很嚴峻的。按照對電鍍廢水處理方式的不同,可將電鍍污泥分為混合污泥和單質污泥兩大類。前者是將不同種類的電鍍廢水混合在一起進行處理而形成的污泥;後者是將不同種類的電鍍廢水分別處理而形成的污泥,如含鉻污泥、含銅污泥、含鎳污泥、含鋅污泥等。但是,實際上大多數電鍍小企業的廢水經過處理後得到的多是混合污泥。因此,目前針對電鍍污泥的處理和資源化利用也是以混合污泥為主要對象。
電鍍廢水處理過程中產生的污泥含有有害重金屬,它具有易積累、不穩定、易流失等特點,如不加以妥善處理,任意堆放,其直接後果是污泥中的cu、Ni、zn、cr等這些重金屬在雨水淋溶作用下.將沿著污泥一土壤一農作物一人體的路徑遷移,並可能引起地表水、土壤、地下水的次生污染,甚至危及生物鏈,造成嚴重的環境破壞 。
針對電鍍污泥的特點及其危害性.從環境污染防治和資源循環利用的角度考慮,主要採用以下兩種處理方式,一是經過處理後,使污泥不會引起二次污染而丟棄並貯存,即無害化處置;二是使對污泥中的重金屬資源進行綜合回收,即資源化利用。
2 電鍍重金屬污泥的無害化處置
污泥處理與處置的無害化技術是實現污泥資源化利用的前提條件。中國在2001年12月17日發布的《危險廢物污染防治技術政策》(環發[2001]199號)中,要求到2015年,所有城市的危險廢物基本實現環境無害化處理處置。
2.1 固化劑固化
在危險固體廢物諸多處理手段中,固化技術是危險廢物處理中的一項重要技術,在區域性集中管理系統中佔有重要地位。和其他處理方法相比,它具有固化材料易得、處理效果好、成本低的優勢 。固化過程是利用添加劑改變廢物的工程特性(例如滲透性、可壓縮性和強度等)的過程。近年來,美國、日本及歐洲一些國家對有毒固體廢物普遍採用固化處置技術,並認為這是一種將危險物轉變為非危險物的最終處置方法,所採用的固化材料有水泥、石灰、玻璃和熱塑料物質等 。其中,水泥固化是國內外最常用的固化技術,在美國被認為是一種很有前途的技術,它被證明對一些重金屬的固定是非常有效的。美國國家環保局也確認它對消除一些特種工廠所產生的污泥有較好的效果。賈金平等 在總結A Roy 等人有關水泥固化電鍍污泥研究經驗的基礎上,進行了一系列的試驗研究,結果發現,在電鍍重金屬污泥中加_人425號水泥,按混凝土與污泥為40:1或50:1進行固化試驗,所得樣品的強度(28 d)可達到275號水泥的標准。固化體對zn、cu、Ni、cr離子有很好固化效果,通過進一步研究發現,對電鍍污泥進行鐵氧體化預固化,然後再與混凝土按1:30的比例進行固化,對樣品及其浸出液進行分析,發現這一方法對zn、Ni、Cu、Cr的固化和穩定效果更佳,且產物強度可達到325號水泥標准。吳少林等 以電鍍鉻污泥為對象,以水泥為固化劑,硫脲、硅酸鈉為添加劑,研究在不同的添加劑用量、配比以及不同的pH值的水中,研究鉻的浸出規律。實驗結果表明,水泥固化效果良好, (水泥): (鉻泥)為1.5:1.0即可。加入硫脲、硅酸鈉等添加劑,可降低鉻的浸出濃度,硫脲的穩定化效果優於硅酸鈉,二者存在一定的協同效應,且硅酸鈉可顯著提高固化塊的強度。塗潔等 利用HAS土壤固化劑代替水泥來固化電鍍污泥,能得到具有良好抗浸出性、耐腐蝕性、抗滲透性、足夠機械強度的護坡磚。該固化工藝開辟了電鍍污泥資源化利用的新途徑。
2.2 填埋
從經濟、技術、廢物現狀來看,填埋技術是比較適合中國國情的一項危險廢物無害化處置途徑,但國內針對電鍍污泥這一類危險廢物的填埋技術仍處於較低的水平。由於對大多數工業危險廢物只是簡單的堆放或填埋,因此,對環境的破壞相當嚴重,特別是對地下水的污染問題十分突出。但技術的障礙是有限期的,在目前和不久的將來,填埋仍然是必要的。特別強調的是危險廢物的安全填埋,即在填埋前必須進行預處理使其穩定化,以減少因毒性或可溶性造成的潛在危險。近年來,國家逐步提高了對電鍍污泥等危險廢物的管理和處置力度。1995年,在廣東深圳建成了第一座符合國際標準的危險廢物填埋場,2001年,國家頒布了《危險廢物填埋污染控制標准》(GB18598—2001),這對電鍍污泥真正實現無害化處置打下了良好的基礎。
2.3 投海
投海實際上就是一種污染物的轉移,通過選擇一個距離和深度適宜的處置場所,把電鍍污泥倒人海洋這個大受體。投海處置曾經也是污泥處置的一種重要方式,如美國在1899-1965年就曾把包括電鍍重金屬污泥在內的多種廢物進行投海處理,歐共體國家中的英國、愛爾蘭等的25% ~45% 固體廢物採用投海的方式進行處理。但對於有明顯毒性的污泥必須經過固化後才允許投入海洋。不管是直接投海,還是固化後再投海,其對海洋生態系統和人類健康造成的威脅是難以避免的,所以國際公約已明令禁止,1998年以後不準再向海洋直接排污。
2.4 焚燒熱處理
污泥焚燒是利用高溫將污泥中的有機物徹底氧化分解,最大程度地使污泥中的某些劇毒成分毒性降低。通過焚燒熱處理,可以大大減少電鍍污泥的體積,降低對環境的危害。此外,焚燒的產物還有利用價值,如灰渣可用於制磚、鋪路或他用,焚燒產生的熱量可用於發電。因此,焚燒熱處理是實現電鍍污泥減量化z無害化的一種快捷、有效的技術。近年一些學者在焚燒減容的基礎上,對焚燒渣的資源化利用進行了廣泛的研究,廖昌華等 以含低濃度Cu、Ni的電鍍重金屬污泥為研究對象,在適宜的溫度下,通過焚燒預處理,使污泥中的重金屬含量提高,從而為最終浸出有價金屬製取海綿銅和硫酸鎳產品創造了條件。但是,由於這種方法能耗較高,對焚燒設備和條件有一定要求,一般的小電鍍廠難以承受巨額的處理費用,所以很難得到大面積的推廣。
3 電鍍重金屬污泥的資源化綜合利用
由於資源貧化和環境污染的加劇,電鍍污泥作為一種重要的重金屬資源加以回收利用,一直是國內外研究的重點。工業化國家上世紀70—80年代已普遍重視從電鍍污泥中回收重金屬的新技術開發。中國在「七五」和「八五」期間也專門設立了關於電鍍污泥資源化的攻關課題 。作為一種廉價的二次資源,只要採用適當的處理方法,電鍍污泥便能變廢為寶,帶來可觀的經濟效益和環境效益。隨著經濟與社會的快速發展,電鍍污泥的資源化利用將逐漸成為前景廣闊的綠色產業。
3.1 回收重金屬
3.1.1 浸出一沉澱法對電鍍污泥進行選擇性浸出,使其中的重金屬分組溶出,這是回收重金屬的關鍵一步,也是決定後續金屬回收率的關鍵所在。金屬的浸出溶解主要有酸浸和氨浸兩種工藝。目前國際上偏向於採用選擇性相對較好的氨浸。由於沉澱法分離回收浸出液中的重金屬,工藝簡單,應用較為廣泛。捷克 u-的研究者提出了一種處理鎳電鍍污泥的多級沉澱工藝,並在實驗室進行了研究。該技術包括污泥酸浸、多種沉澱方法凈化硫酸鹽浸出液,使共存於鎳電鍍污泥中的雜質,如Fe、zn、cu、cr、Cd、A1等被脫除,最後一級沉澱中鎳以氫氧化物的形式從凈化溶液中分離出來。鎳的最終沉澱物達到的純度足以在冶金工業中直接再利用。毛諳章等人? 研究了硫化物沉澱分離提純、氯酸鈉硫酸體系浸出回收銅的工藝路線,銅的總回收率達到94.5% 。陳凡植等 研究採用常溫下浸出、鐵屑置換、多步沉澱凈化製取硫酸鎳和固化處理工藝綜合利用電鍍污泥,得到的海綿狀銅粉,品位在90% 以上,回收率達95% ,還可以得到工業純的硫酸鎳,鎳的回收率大於80% 。
3.1.2 浸出一溶劑萃取法
電鍍污泥的溶劑萃取法,是在浸出液中加入與水互補相容的有機溶劑,或含有萃取劑的有機溶劑,通過傳質過程,使污泥中的某些重金屬物質進入有機相,從而達到分離濃集的目的,也稱液一液萃取法。20世紀70年代,瑞典國家技術發展委員會支持Chalmers大學開發了Am—MAR「浸出一溶劑萃取」工藝回收電鍍污泥中的cu、zn、Ni等重金屬物質,並逐步形成工業規模。中國的祝萬鵬等 』」』 以溶劑萃取工藝為主體,先後進行了一系列從電鍍污泥中回收有價金屬的實驗研究,先是採用氨絡合分組浸出一蒸氨一水解硫酸浸出一溶劑萃取一金屬鹽結晶工藝,對電鍍污泥進行有價金屬的回收,並得到了含Cu、zn、Ni、cr等的各種高純度金屬鹽類產品。後來採用N ,一煤油一H sO 四級逆流萃取工藝,可使銅的萃取率達99% ,而共存的鎳和鋅損失幾乎為零。銅在此工藝過程中以銅鹽CuSO ·5H:O,或電解高純銅的形式回收,初步經濟分析表明,其產值抵消日常的運行費用,還具有較高的經濟效益。整個工藝過程較簡單,循環運行,基本不產生二次污染。後來經過工藝改進,該小組又研究了硫酸浸出一P姍~煤油一硫酸體系,萃取分離鐵、鈉皂一P:。 一煤油一硫酸體系共萃取鉻、鋁一反萃取分離鉻、鋁工藝,回收電鍍污泥氨浸渣中的金屬。通過優化實驗,並且確定了全流程的最佳工藝參數。結果表明,鐵鉻渣中的金屬鉻、鋁和鐵均可以高純度鹽類形式回收,可作為化學試劑使用,回收率達95% 以上。葡萄牙的J.E.Silva等 對含有cu、cr、zn、Ni等重金屬的電鍍污泥,採用硫酸浸出一置換除銅一沉澱除鉻一D2EHPA和Cyancx 272萃取分離鋅、鎳一結晶的工藝進行了研究。結果顯示,D2EHPA對鋅的萃取率要比Cyancx 272高,且存在於有機相中的鋅能全部被回收,經過結晶後,能得到純度相當高的硫酸鎳產品。在銅、鉻的去除階段,銅的回收率達到90% ,產生的Cr—CaCO,沉澱,有可能製作硅酸鹽材料
3.1.3 電解法
根據物理化學中的電解基本原理,在國內一些冶煉廠對主要含Fe(OH),和Cr(OH) 組分的污泥進行了電解法處理,其中武漢冶煉廠¨ 的方法值得借鑒。他們將一定量的水和硫酸加入到污泥中,沸騰後靜止30 min,過濾後的濾液移至冷凍槽,然後加入理論量1~2.5倍的硫酸銨,使生成硫酸鉻和硫酸鐵轉變為鐵礬,根據鉻礬和鐵礬在低溫(75℃)條件下溶解度的不同而達到鉻、鐵的分離,最後,可回收90% 以上的鉻。
3.1.4 氫還原分離法 氫還原分離金屬物質是一種較成熟的技術。上世紀50年代以來,在工業上用氫氣還原生產銅、鎳和鈷等金屬,取得了顯著的經濟效益和社會效益。張冠東等?。採用濕法氫還原對電鍍污泥氨浸產物中的cu、Ni、zn等有價金屬進行了綜合回收處理,成功地分離出金屬銅粉和鎳粉。實驗結果表明,在弱酸性硫酸銨溶液中,可以獲得較好的銅鎳分離效果。所得兩種金屬粉末的純度可達到99.5% ,符合3 銅粉和3 鎳粉的產品要求,銅的回收率達到99% ,鎳的回收率達到98% 以上。並且在此基礎上,對還原尾液中的鋅進行了回收。該法流程簡單,投資少,產品純度高,值得在工業生產中進一步改進推廣。
3.1.5 煅燒酸溶法 Jitka Jandova等¨ 通過實驗研究發現,對含銅電鍍污泥進行酸溶、煅燒、再酸溶,最後以銅鹽的形式回收,是一種簡便可行的方法。在高溫煅燒過程中,大部分雜質,如Fe、Zn、Al、Ni、si等轉變成溶解緩慢的氧化物,從而使銅在接下來的過程中得以分離,最終以cu (SO ) H:0的形式回收。這種方法流程簡單,不需要添加別的試劑,具有較強的經濟性和簡便性。但回收得到的銅鹽含雜質較多,工藝有待進一步優化。
3.2 鐵氧體綜合利用技術
鐵氧體技術是根據生產鐵氧體的原理發展起來的,應用鐵氧體綜合利用技術處置電鍍重金屬污泥,並製成合適的工業產品,是經過許多學者實驗研究後得到肯定的一種方法。由於電鍍污泥是電鍍廢水經亞鐵絮凝的產物,故電鍍污泥中一般含有大量的鐵離子,尤其在含cr電鍍污泥中,採用適當的無機合成技術可使其變成復合鐵氧體 ,電鍍污泥中的鐵離子以及其它多種金屬離子被束縛在反尖晶石面心立方結構的四氧化三鐵晶格格點上 ,其晶體結構穩定,達到了消除二次污染的目的。
鐵氧體化分為干法和濕法兩種工藝,上海交通大學的賈金平等 利用上海電機廠、上海水泵廠產生的電鍍污泥為原料,通過濕法工藝合成了鐵黑產品,並以鐵黑顏料為原料,開發了C43—31黑色醇酸漆、Y53—4—2鐵黑油性防銹漆等多項產品。隨後又在原來的基礎上開發了電鍍污泥濕法合成鐵氧體後,干法還原烘乾的新工藝,並申請了專利。通過這一工藝可以合成性能優良的磁性探傷粉,而且具有工藝簡單、成品率高、無二次污染、處理成本低等優點。
3.3 堆肥化製作肥料
國內外控制污泥重金屬污染的主要方法,是採用污泥堆肥。堆肥化即人工控制在一定水分、C/N和通風條件下通過微生物發酵作用,將有機物轉變為肥料的過程。自然界中許多微生物具有氧化、分解有機物的能力,實踐證明,可利用微生物在一定濕度和pH條件下,使有機物發生生物化學降解,形成類似腐殖質物質,作肥料和改良土壤,並根據微生物對0,的需求不同,分為好氧堆肥和厭氧堆肥,堆漚使溫度上升,加快其分解速度,殺滅病原菌。電鍍污泥進行堆肥化處理的研究還處在探索階段,周建紅等 對電鍍廢鉻液經處理後的含鉻污泥進行堆肥化處理,經過24 d,可以使1 g污泥中鉻(VI)含量由原來的4.060 mg降至0.028 mg,使大部分重金屬固化,大大降低了其毒性。通過堆肥後,污泥施用於花卉的盆栽試驗,顯示了較好的生長響應,並且避開了人類食物鏈,為含鉻污泥的處理及其資源化開辟了一條新路。上海交通大學的研究人員 。。把電鍍污泥合成的鐵氧體經磁化後製成磁性肥料,在田間進行了應用研究,結果發現,施用這種磁肥對雞毛菜、蔥等農作物有明顯的增產作用,並且縮短了生長周期。但中國電鍍污泥一般重金屬含量較高,成分復雜,採用堆肥處理後的污泥農用仍有一定的難度和風險,加上堆肥周期長、程序復雜,也限制了電鍍污泥的堆肥化處理研究。
3.4 生產改性塑料製品
電鍍污泥與廢塑料聯合生產改性塑料製品是國內一項獨創的新技術,由上海多家科研單位聯合開發。其基本原理是採用塑料固化的方法,將電鍍污泥作為填充料,與廢塑料在適當的溫度下混煉,並經壓制或注塑、成型等過程,製成改性塑料製品。電鍍污泥在專用TGZS 300型高濕物料乾燥機中經400—600℃高溫乾燥後,重金屬基本達到穩定,浸出試驗符合國家標准。研究表明,未經改性的電鍍污泥與塑料之間屬物理混合,故屬包裹型固化。但是,經用表面活性劑(如油酸鈉)改性處理後,經x射線粉末衍射圖譜分析表明,具有顯著的化學作用,提高了污泥的疏水性,接觸角達100。左右,因此可以推斷與塑料有較好的相容性,充填均勻,機械性能將有所改善。該工藝生產的塑料製品(包含改性、干化後的電鍍污泥),通過浸出試驗表明,重金屬的浸出率和塑料製品的機械強度都能達到規定指標。
電鍍污泥與廢塑料聯合生產改性塑料製品,既解決了廢料的安全處置,又充分利用了廢物資源,是變廢為寶,綜合利用,實現廢物資源化的重要途徑,具有良好的社會和環境效益。
4 結語
電鍍業是當今全球的三大污染行業之一。面對逐漸脆弱的生態環境和全世界資源的日益貧乏,積極開展電鍍污泥的無害化處置和資源化綜合利用,意義重大,這也是實現社會可持續發展的必然選擇。
③ 水體污染的類型
9.1.1.1 水體污染的概念
水體,是河流、湖泊、沼澤、水庫、地下水、冰川、海洋的總稱。它不僅包括水,而且也包括水中的懸浮物、底泥及水生生物等。
水體因接受過多的雜質,而使其在水體中的含量超過了水體的自凈能力,導致其物理、化學及生物學特性改變和本質的惡化,從而影響水的有效利用,危害人體健康,這種現象稱為水體污染。在自然情況下,天然水的水質也常有一定變化,但這種變化是一種自然現象,不屬於水體污染。
水體一旦受到污染,會降低水的質量,直接或間接地危及人類的健康和生存。造成水體污染的原因主要有:點源污染與面源污染(或稱非點源污染)兩類。點源污染來自未經妥善處理的城市污水(生活污水與工業廢水)集中排入水體。面源污染來自:農田肥料、農葯以及城市地面的污染物,隨雨水徑流進入水體;隨大氣擴散的有毒有害物質,由於重力沉降或降雨過程,進入水體。
9.1.1.2 水體污染的類型
水體污染源是指向水體排放污染物的場所、設備和裝置等。按造成水體污染的原因可將水體污染源分為天然污染源和人為污染源;按受污染的水體可分為地面水污染源、地下水污染源和海洋污染源;按污染源釋放的有害物質種類分為物理性污染源、化學性污染源、生物性污染源;按污染的分布特徵可分為點污染源、面污染源、擴散污染源。
由自然因素造成的污染,稱為天然污染。如地面水滲漏和地下水流動將地層中某些礦物質溶解,使水中的鹽分、微量元素或放射性物質濃度偏高而使水質惡化。人類的生產和生活活動使水體污染,稱為人為污染。人為污染是當前水體污染的主要污染源。
(1)物理性污染
熱污染,主要來源於熱電站、核電站、冶金和石油化工等工廠的排水。
放射性污染,來源於核生產廢物、核試驗沉降物、核醫療研究單位的排水。
(2)化學性污染
無機污染包括:重金屬污染,來源於礦物開采、冶煉、電鍍、儀表、電解以及化工等工廠排水;砷污染,來源於含砷礦石處理、制葯、農葯和化肥等工廠的排水;氰化物污染,來源於電鍍、冶金、煤氣、洗滌、塑料、化學纖維等工廠的排水;氮和磷污染,來源於農田排水、糞便排水、化肥、製革、食品、毛紡等工廠的排水;酸鹼和鹽污染,來源於礦山、石油、化工、化肥、造紙、電鍍工廠排水。
有機污染包括:酚類化合物污染,來源於煉油、焦化、樹脂等工廠的排水;苯類化合物污染,來源於石油化工、焦化、農葯塑料、染料等工廠的排水;油類,來源於採油、煉油、船舶以及機械、化工等工廠的排水。
(3)生物性污染
病原體污染,來源於糞便、醫院污水、屠宰畜牧、製革生物製品等工廠排水。
黴素污染,來源於制葯、釀造、製革等工廠的排水。
9.1.1.3 水體污染的來源
污水是人類在自己的生活、生產活動中用過並為生活或生產過程所污染的水。污水包括生活污水、工業廢水、被污染的降水及各種排入管渠的其他污染水。
(1)生活污水
生活污水,是指居民在日常生活中排出的廢水。生活污水的成分取決於居民的生活狀況及生活習慣。我國地域廣闊、情況復雜,即使生活狀況相似,各地污水中雜質的成分和濃度也不盡相同。
(2)工業廢水
工業廢水,是在生產過程中排出的廢水。其成分主要取決於生產工藝過程和使用的原料,工業廢水也包括因高溫(水溫超過60℃)而形成熱污染的工業廢水。不同的工業生產產生不同性質的廢水,同類工業採用不同的生產工藝過程,產生的廢水也不相同。
工業廢水性質各異,多半具有危害性,未經處理不允許排放。但冷卻水和在生產過程中只起輔助作用或只是溫度稍有上升的水,因未被污染物污染或污染很輕,此時可採取冷卻或簡單的處理後重復使用。這種較清潔、不經處理即可排放的廢水稱為生產廢水;而污染較嚴重、必須經處理方可排放的工業廢水稱為生產污水。工業廢水是生產污水和生產廢水的總稱。
(3)城市污水
城市污水是排入城鎮排水系統的污水的總稱,是生活污水和工業廢水的混合液。我國多數城市污水屬此類。在合流制排水系統中,城市污水還包括降水。城市污水中各類污水所佔的比例,因城市的排水體制不同而有差異。城市污水的水質指標、污染物組成、形態及含量也因城市不同而存在差異。
9.1.1.4水體污染的性質
(1)物理性質
水溫:生活污水的年平均溫度相差不大,一般在10~20℃間;許多工業排出的廢水溫度較高。水中的溶解氧隨水溫的升高而減小:加速污水中好氧微生物的耗氧速度,導致水體處於缺氧和無氧狀態,使水質惡化。城市污水的水溫與城市排水管網的體制及生產潛水所佔的比例有關。一般來講,污水生物處理的溫度在5~40℃間。
色度:生活廢水的顏色一般呈灰色。工業廢水則由於工礦企業的不同,色度差異較大,如印染、造紙等生產污水色度很高。
臭味:臭和味是一項感官性狀指標。天然水是無色無味的。水體受到污染後產生氣味,影響了水環境。生活污水的臭味主要由有機物腐敗產生的氣體造成,主要來源於還原性硫和氮的化合物;工業廢水的臭味主要由揮發性化合物造成。
固體含量:水中所有殘渣的總和為總固體(TS),其測定方法是將一定量水樣在105~110℃間烘箱中烘乾至恆重,所得含量即為總固體量。總固體生要由有機物、無機物及生物體組成,按其存在形態分為:懸浮物、膠體和溶解物。總固體包括溶解物質(DS)和懸浮固體物質(SS)。懸浮固體由有機物和無機物組成,根據其揮發性能,懸浮固體又可分為揮發性懸浮固體(VSS)和非揮發性懸浮固體(NVSS)兩種。生活污水中揮發性懸浮固體約佔70%。
(2)化學性質
無機物指標:主要包括氮、磷、無機鹽類和重金屬離子及酸鹼度等。
污水中的氮、磷為植物的營養物質。對於高等植物的生長來說,氮、磷是寶貴物質,而對於天然水體中的藻類,雖然是生長物質,但藻類的大量生長和繁殖,能使水體產生富營養化現象。
污水中的無機鹽類,主要指污水中的硫酸鹽、氯化物和氰化物等。硫酸鹽來自人類排泄物及一些工礦企業廢水,如洗礦、化工、制葯、造紙等工業廢水。污水中的硫酸鹽用SO2-4表示,可以在缺氧狀態下,由硫酸鹽還原菌和反硫化菌的作用,還原成H2S。氯化物主要來自人類排泄物。某些工業廢水含有較高的氯化物,它對管道及設備有腐蝕作用。污水中的氰化物主要來自電鍍、焦化、製革、塑料、農葯等工業廢水。氰化物為劇毒物質,在污水中以無機氰和有機氰兩種類型存在。除此以外,城市污水中還存在一些無機有毒物質,如無機砷化物,主要以亞砷酸和砷酸鹽形式存在。砷會在人體內積累,屬致癌物質。
污水中重金屬主要有汞、鎘、鉛、鉻、鋅、銅、鎳、錫等。重金屬以離子狀態存在時毒性最大,這些離子不能被生物降解,通常可以通過食物鏈在動物或人體內富集,產生中毒現象。上述金屬離子在低濃度時,有益於微生物的生長,有些離子對人類也有益,但其濃度超過一定值後,即有毒害作用。需要說明的是,有些重金屬具有放射性,在其原子裂變的過程中會釋放一些對人體有害的射線,主要有α射線、β射線,γ射線及質子束等;產生這些放射物質的金屬主要是鑭系和錒系元素,這些物質在生活污水中很少見,在某些工業廢水如采礦業及核工業廢水中會出現。一般情況下在城市污水中的含量極低。放射性物質能誘發白血病等疾病。
酸鹼污染物主要由排入城市管網的工業廢水造成。水中的酸鹼度以pH值反映其含量。酸性廢水的危害在於有較大的腐蝕性;鹼性廢水則易產生泡沫,使土壤鹽鹼化。一般情況下城市污水的酸鹼性變化不大,微生物生長最佳酸鹼度為中性偏鹼,當pH值超出6~9的范圍,對人畜就會造成危害。
有機物指標:城市污水含有大量的有機物,其主要是碳水化合物、蛋白質、脂肪等物質。由於有機物種類極其復雜,難以定量,但上述有機物都有被氧化的共性,即在氧化分解中需要消耗大量的氧,所以可以用氧化過程消耗的氧量作為有機物的指標。在實際工作中經常採用生物化學需氧量(BOD)、化學需氧量(COD)、總有機碳(TOC)、總含氧量(TOD)等指標來反映污水中有機物的含量。
④ 含鉻化物的電鍍廢水什麼顏色
一般六價鉻呈橙色、三價鉻呈綠色,但如果廢水中其它重金屬離子如銅、鎳的含量更高,PH值又呈酸性、六價鉻的含量不高,顏色會被掩蓋或變黑,有經驗的電鍍師傅可以根據鍍鉻槽液顏色的變化判斷三價鉻的含量的高低就是這個道理。
⑤ 電鍍企業污染 現場怎麼查
檢查廢水分類收集管道是否齊全,應注意各類廢水收集管道之間不得相通。二是檢查各鍍種清洗水是否能夠全部接入分質收集管道,是否存在廢水混接、錯接、漏接等情況,尤其要關注半自動線和手動線的跑冒滴漏問題。三是檢查各股廢水pH值。含氰廢水pH值為8~11,含鉻廢水pH值為4~6,含鎳廢水pH值為6左右,酸鹼廢水一般經酸鹼混合後呈酸性,綜合廢水pH值根據電鍍混合廢水所包含的鍍種而定。四是觀察各股廢水顏色,若含鉻廢水混入其他廢水中,則呈棕黃色。最後,若初步判斷存在問題,應在各股廢水調節池采樣,檢測一類污染物以及CN-濃度。
檢查生產車間是否建設廢氣收集設施、收集設施是否正常運行,重點檢查酸洗槽,氰化鍍銅、鍍鉻等鍍槽以及退鍍槽等設施,是否設置集氣罩或在槽四周設置廢氣收集口,查看集氣罩是否腐蝕破損、廢氣收集口是否有堵塞。二是檢查車間內是否有強烈的刺激性氣味,判斷廢氣收集設施運行效果。
天#貓美國進口普衛欣提示:霧霾天氣出行記得做好防護。
檢查鍍槽是否配置槽液過濾機,若有過濾機,應將槽液過濾渣和廢濾芯作為危險廢物收集和處置;若無過濾機,應將廢槽液作為危險廢物收集和處置,不得將廢槽液排入廢水處理設施。二是現場檢查廢槽液、槽渣,槽液過濾渣、廢濾芯的收集、貯存情況,查看台賬記錄、危廢申報登記材料、危廢委託處置合同、轉移聯單等材料。
檢查車間地面和集水溝是否採用環氧樹脂塗層等防滲漏措施,是否有破損,是否存在地面溢流。二是現場觀察廢水收集管道是否有明顯破損,是否有廢水外滲的痕跡。
現場觀察雨水收集管道與生產廢水收集管道是否相互獨立。二是現場檢測雨水收集管道和雨水排口內pH值是否異常。三是采樣檢測雨水收集管道和雨水排口內廢水中的重金屬離子濃度。
⑥ 工廠的含鎳廢水怎麼處理
含鎳廢水處理:通過定量投加NaOH和混凝劑PAC,並調節pH為8.5~9.5,可使廢水中的Ni2+在鹼性條件下生成氫氧化鎳的沉澱絮體。然後投加PAM後再通過沉澱池進行泥水分離。泥水分離後的上清液進入到後續的鎳鉻中和池繼續處理,沉澱污泥則採用壓濾機脫水後外運資源化處理。
含鎳廢水處理工藝單元介紹:
(1)設置鎳系均質池。對含鎳廢水進行水質水量調節。內壁採用纖維強化塑料防腐。
(2)設置鎳系混凝池。採用加葯機定量投加NaOH和混凝劑PAC。內壁採用纖維強化塑料防腐。
(3)設置鎳系絮凝池。絮凝劑PAM採用加葯機向絮凝池內定量投加,機械攪拌。內壁尺寸採用纖維強化塑料防腐。
(4)設置鎳系沉澱池。內壁採用纖維強化塑料防腐,池內設PP沉澱斜管。沉澱污泥採用壓濾機脫水後外運資源化處理。泥水分離後的上清液進入後續的鎳鉻中和池繼續處理。
(5)設置鎳鉻中和池。中和池用以匯集鉻系、鎳系沉澱池出水。採用加葯機定量投加H2SO4調整pH至中性,內設機械攪拌。壁採用內纖維強化塑料防腐。
(6)設置多介質過濾塔。過濾塔主要用於去除廢水中粒徑大於20 μm的懸浮物以及膠體等浮游性雜質。地上直立式纖維強化塑料結構。過濾器濾料由上向下依次為:500 mm厚、粒徑1~2 mm的無煙煤;500 mm厚、粒徑2~4 mm的無煙煤;400 mm厚、粒徑4~8 mm的石英砂;200 mm厚的礫石墊層。
(7)設置活性炭吸附塔。活性炭吸附塔不僅具有過濾懸浮物的功能,還能去除常規手段難以去除的某些有機或無機污染物,尤其是一些具有臭味或顏色的有機物,以及重金屬等物質。地上直立式纖維強化塑料結構,濾速10~20 m/h。活性炭粒徑2~4 mm,填充高度1.8 m。
(8)設置精密過濾器。用以截留廢水中殘存的懸浮物,降低後續工序的處理負荷。地上式不銹鋼材質,過濾精度為100 μm。
(9)設置UF超濾系統。超濾系統可進一步去除廢水中的乳化油、膠體等懸浮物,超濾後的濃縮液排至綜合廢水pH調整池。超濾膜採用外壓式PP材質的0.1~0.2 μm中空纖維膜元件。運行方式為錯流過濾、氣水反沖洗方式,全自動運行。反沖洗水採用加酸鹼及NaClO的混合液,反洗後的出水進入鎳系均質池重新處理。
(10)設置RO反滲透系統。反滲透作為一種高效膜分離技術,能通過對進料中的水和某些離子進行分離,實現對原料的濃縮和純化。反滲透的出水作為鍍件漂洗水或其他工藝水使用。未透過膜的含金屬等無機離子的廢水,排至綜合廢水pH調整池。反滲透裝置採用聚醯胺復合材料的膜元件,設計回收率不小於70%。
⑦ 求助:污水,要測定哪些水質指標
污水水質指標,污水所含的污染物質千差萬別,可用分析和檢測的方法對污水中的污染物質做出定性、定量的檢測以反映污水的水質。國家對水質的分析和檢測制定有許多標准,其指標可分為物理、化學、生物三大類。
物理性指標
(1)溫度
許多工業排出的廢水都有較高的溫度,這些廢水排入水體使其水溫升高,引起水體的熱污染。水溫升高影響水生生物的生存和對水資源的利用。氧氣在水中的溶解度隨水溫的升高而減小,這樣,一方面水中溶解氧減少,另一方面水溫升高加速耗氧反應,最終導致水體缺氧或水質惡化。
(2)色度
一般純凈的天然水是清澈透明的,即無色的。但帶有金屬化合物或有機化合物等有色污染物的污水呈各種顏色。將有色污水用蒸餾水稀釋後與參比水樣對比,一直稀釋到二水樣色差一樣,此時污水的稀釋倍數即為其色度。
(3)嗅和味
嗅和味同色度一樣也是感官性指標,可定性反映某種污染物的多寡。天然水是無嗅無味的。當水體受到污染後會產生異樣的氣味。水的異臭來源於還原性硫和氮的化合物、揮發性有機物和氯氣等污染物質。不同鹽分會給水帶來不同的異味。如氯化鈉帶鹹味,硫酸鎂帶苦味,硫酸鈣略帶甜味等。
(3)固體物質
水中所有殘渣的總和稱為總固體(TS),總固體包括溶解物質(DS)和懸浮固體物質(SS)。水樣經過過濾後,濾液蒸干所得的固體即為溶解性固體(DS),濾渣脫水烘乾後即是懸浮固體(SS)。固體殘渣根據揮發性能可分為揮發性固體(VS)和固定性固體(FS)。將固體在600℃的溫度下灼燒,揮發掉的量即是揮發性固體(VS),灼燒殘渣則是固定性固體(FS)。溶解性固體表示鹽類的含量,懸浮固體表示水中不溶解的固態物質的量,揮發性固體反映固體中有機成分的量。
水體含鹽量多將影響生物細胞的滲透壓和生物的正常生長。懸浮固體將可能造成水道淤塞。揮發性固體是水體有機污染的重要來源。
折疊編輯本段化學性指標
(1)有機物
生活污水和某些工業廢水中所含的碳水化合物、蛋白質、脂肪等有機化合物在微生物作用下最終分解為簡單的無機物質、二氧化碳和水等。這些有機物在分解過程中需要消耗大量的氧,故屬耗氧污染物。耗氧有機污染物是使水體產生黑臭的主要原因之一。
污水的有機污染物的組成較復雜,現有技術難以分別測定各類有機物的含量,通常也沒有必要。從水體有機污染物看,其主要危害是消耗水中溶解氧。在實際工作中一般採用生物化學需氧量(BOD)、化學需氧量(COD、OC)、總有機碳(TOC)、總需氧量(TOD)等指標來反映水中需氧有機物的含量。其中TOC、TOD的測定都是燃燒化學氧化反應,前者測定結果以碳表示,後者則以氧表示。TOC、TOD的耗氧過程與BOD的耗氧過程有本質的區別,而且由於各種水樣中有機物質的成分不同,生化過程差別也比較大。各種水質之間TOC和TOD與BOD不存在固定的相關關系。在水質條件基本相同的條件下,BOD與TOC或TOD之間存在一定的相關關系。
(2)無機性指標
① 植物營養元素 污水中的N、P為植物營養元素,從農作物生長角度看,植物營養元素是寶貴的物質,但過多的N、P進入天然水體卻易導致富營養化。水體中氮、磷含量的高低與水體富營養化程度有密切關系,就污水對水體富營養化作用來說,磷的作用遠大於氮。
② pH值 主要是指示水樣的酸鹼性。
③重金屬 重金屬主要是指汞、鎘、鉛、鉻、鎳,以及類金屬砷等生物毒性顯著的元素,也包括具有一定毒害性的一般重金屬,如鋅、銅、鈷、錫等。
折疊編輯本段生物性指標
(1)細菌總數
水中細菌總數反映了水體受細菌污染的程度。細菌總數不能說明污染的來源,必須結合大腸菌群數來判斷水體污染的來源和安全程度。
(2)大腸菌群
水是傳播腸道疾病的一種重要媒介,而大腸菌群被視為最基本的糞便傳染指示菌群。大腸菌群的值可表明水樣被糞便污染的程度,間接表明有腸道病菌(傷寒、痢疾、霍亂等)存在的可能性。
⑧ 廢水中含有鎳怎麼處理
工具/原料
高效除來鎳劑HMC-M2
H2SO4/HCl
PAC、PAM
1、測量自含鎳廢水中鎳離子的濃度,例如Cni=40ppm(mg/L)
⑨ 化學鍍鎳的廢液處理
常見的化學鎳廢液處理工藝有化學沉澱法、常規蒸發工藝,處理成本高。
ENS-DR化鎳廢液干化設備,採用高效布膜,特殊剝離的技術,將化鎳廢液直接干化,連續固體出料,含水率<10%,並且不會產生結垢。