導航:首頁 > 污水知識 > 廢水脫氮消耗氧氣量

廢水脫氮消耗氧氣量

發布時間:2025-01-03 02:50:18

① 氨氮超標是什麼原因導致怎麼樣才能快速處理達標

氮是引起水體富營養化的主要營養物質,氮源污染造成諸多環境危害問題,有關排放標準的內容和數值指標在不斷改進。
01、氮的去除機理
氮的去除不是靠細胞過量吸收去除的,其主要機理為:
● 顆粒性不可生物降解有機氮通過生物絮凝作用成為活性污泥組分,通過排除剩餘活性污泥從系統中去除;
● 顆粒性可生物降解有機氮通過水解轉化為溶解性可生物降解有機氮。溶解性不可生物降解有機氮,隨處理出水排出,決定出水的有機氮濃度;
● 溶解性可生物降解有機氮通過異養菌的氨化作用轉化為氨氮,其中尿素可迅速水解成碳酸銨。好氧條件下硝化菌將氨氮氧化為硝態氮,缺氧條件下反硝化菌將硝酸鹽異化還原成氣態氮,從水中除去。
由於缺氧區反硝化需要大量碳源,因此一般缺氧區都放置在生物處理的前端(進水端),但是進水中多為氨氮,少有硝態氮,無法進行反硝化,因此需要內迴流。
生化池出水中的總氮濃度和內迴流是一樣的,因此,即使是理論狀態下,最大的脫氮率也只能達到(r+R)/(1+r+R),其中,r為內迴流比,R為污泥迴流比。
02、氮生化去除過程
氮生化去除過程主要包含氨化過程、硝化過程、反硝化過程,其中反硝化過程包含全程反硝化和短程反硝化,硝化細菌世代周期5~8天,反硝化細菌世代周期15天左右。

② 氨氮去除工藝選擇哪個去除效果最好

去除廢水中氨氮方法的比較
氨氮超標處理的常用方法是生化處理方法,管理妥當對氨氮,乃至COD,總磷都會有很好的去除效果。不過生化處理的局限因素也有很多,比如場地,溫度,進水濃度以及碳氮比等等都會一定程度的影響生物對氨氮的分解,導致出水結果不理想。一般在生化處理後配合化學葯劑使用,從而達到更高的去除效率。
(一)生化處理:
常用的脫氮工藝就是我們常見的AO工藝,原理:氨(NH3)被亞硝化細菌氧化成亞硝酸,亞硝酸再被硝化細菌氧化成硝酸,稱為硝化作用,硝化作用需要消耗氧氣,當水中溶氧濃度低於1~2毫克/升時硝化作用速度明顯降低。在水中溶氧缺乏的情況下,反硝化細菌能將硝酸還原為亞硝酸、次硝酸、羥胺或氮時,這種過程稱為硝酸還原,當形成的氣態氮作為代謝物釋放並從系統中流失時,就稱之為脫氮作用。
(二)化學處理葯劑:
PAC,PAM可以處理SS造成的氨氮超標(實際運用性不大,可降的氨氮數值不多)
臭氧可以在工藝末端輔助工藝進行深度處理,去除氨氮(成本高,耗能大,不易控制)
投加氨氮去除劑JN-1,使氨氮氧化為氮氣的方法,目前在污水處理行業得到廣泛的運用。投加氨氮去除劑可以直接載入原本工藝的沉澱池當中,葯劑的反應時間在5-6min左右,無需另外增加設備和工藝,大大減少了成本。
去除廢水中氨氮方法的比較,氨氮去除劑操作簡單方便,投加量少且對氨氮的去除率達到96%以上,成本可控,處理結果穩定,無二次污染,同時具有脫色、回調pH等功能。

③ 氨氮超標的原因

一、有機物導致的氨氮超標
筆者運營過CN比小於3的高氨氮污水,因脫氮工藝要求CN比在4~6,所以需要投加碳源來提高反硝化的完全性。當時投加的碳源是甲醇,因為某些原因甲醇儲罐出口閥門脫落,大量甲醇進入A池,導致曝氣池泡沫很多,出水COD,氨氮飆升,系統崩潰。
分析:大量碳源進入A池,反硝化利用不了,進入曝氣池,因為底物充足,異養菌有氧代謝,大量消耗氧氣和微量元素,因為硝化細菌是自養菌,代謝能力差,氧氣被爭奪,形成不了優勢菌種,所以硝化反應受限制,氨氮升高。
解決辦法:
1、立即停止進水進行悶爆、內外迴流連續開啟
2、停止壓泥保證污泥濃度
3、如果有機物已經引起非絲狀菌膨脹可以投加PAC來增加污泥絮性、投加消泡劑來消除沖擊泡沫
二、內迴流導致的氨氮超標
筆者目前遇到的內迴流導致的氨氮超標有兩方面原因:內迴流泵有電氣故障(現場跳停扔有運行信號)、機械故障(葉輪脫落)和人為原因(內迴流泵未試正反轉,現場為反轉狀態)。
分析:內迴流導致的氨氮超標也可以歸到有機物沖擊中,因為沒有硝化液的迴流,導致A池中只有少量外迴流攜帶的硝態氮,總體成厭氧環境,碳源只會水解酸化而不會完全代謝成二氧化碳逸出。所以大量有機物進入曝氣池,導致了氨氮的升高。
解決辦法:
內迴流的問題很好發現,可以通過數據及趨勢來判斷是否是內迴流導致的問題:初期O池出口硝態氮升高,A池硝態氮降低直至0,PH降低等,所以解決辦法分三種情況:
1、及時發現問題,檢修內迴流泵就可以了
2、內迴流已經導致氨氮升高,檢修內迴流泵,停止或者減少進水進行悶爆
3、硝化系統已經崩潰,停止進水悶爆,如果有條件、情況比較緊迫可以投加相似脫氮系統的生化污泥,加快系統恢復。
三、PH過低導致的氨氮超標
筆者目前遇到的PH過低導致的氨氮超標有三種情況:
1,內迴流太大或者內迴流處曝氣開太大,導致攜帶大量的氧進入A池,破壞缺氧環境,反硝化細菌有氧代謝,部分有機物被有氧代謝掉,嚴重影響了反硝化的完整性,因為反硝化可以補償硝化反應代謝掉鹼度的一半,所以因為缺氧環境的破壞導致鹼度產生減少,PH降低,低於硝化細菌適宜的PH之後 硝化反應受抑制,氨氮升高。這種情況可能有些同行會遇到,但是從來沒從這方面找原因。
2,進水CN比不足,原因也是反硝化不完整,產生的鹼度少,導致的PH下降。
3,進水鹼度降低導致的PH連續下降。
分析:PH降低導致的氨氮超標,實際中發生的概率比較低,因為PH的連續下降是一個過程,一般運營人員在沒找到問題的時候就開始加鹼去調節PH了
解決辦法:
1,PH過低這種問題其實很簡單,就是發現PH連續下降就要開始投加鹼來維持PH,然後再通過分析去查找原因。
2,如果PH過低已經導致了系統的崩潰,目前筆者接觸過PH在5.8~6的時候,硝化系統還沒有崩潰的情況,但是及時將PH補充上來,首先要把系統的PH補充上來,然後悶爆或者投加同類型的污泥。
四、DO過低導致的氨氮超標
筆者運營過的污水是高硬度的廢水,特別容易結垢,開始曝氣使用微孔爆氣器,運行一段時間曝氣頭就會堵塞,導致DO一直提不上來導致氨氮升高。
分析:原因很簡單,曝氣的作用是充氧和攪拌,曝氣頭的堵塞造成兩種都受到影響,而硝化反應是有氧代謝,需要保證曝氣池溶氧適宜的環境下才能正常進行,而DO過低則會導致硝化受阻,氨氮超標。
解決辦法:
1、更換曝氣頭,如果硬度低操作問題導致的堵塞可以考慮這種方法
2、改造成大孔曝氣器(氧利用率過低,風機餘量大和不差錢的企業可以考慮)或者射流曝氣器(只能用監測池出水來進行充當動力流體,尤其是硬度高的污水,切記!)
五、泥齡導致的氨氮超標
目前筆者遇到過兩種情況:
1、壓泥過多,導致氨氮升高。
2、污泥迴流不均衡,兩側系統污泥迴流相差過大,導致污泥迴流少的一側氨氮升高。
分析:壓泥過多和污泥迴流過少都會導致污泥的泥齡降低,因為細菌都有世代期,SRT低於世代期,會導致該細菌無法在系統中聚集,形成不了優勢菌種,所以對應的代謝物無法去除。一般泥齡是細菌世代期的3-4倍。
解決辦法:
1、減少進水或者悶爆
2、投加同類型污泥(一般情況下1,2一塊用效果更好)
3、如果是污泥迴流不均衡導致的問題,把問題系列的減少進水或者悶爆、保證正常系列運行的情況下將部分污泥迴流到問題系列
六、氨氮沖擊導致的氨氮超標
這種情況一般是工業污水或者有工業污水進入生活污水管網的系統才能遇到,筆者之前遇到的情況是上游汽提塔控制溫度降低,導致來水氨氮突然升高,脫氮系統崩潰,出水氨氮超標,污水處理現場氨味特別濃(曝氣會有部分游離氨逸出)。
分析:氨氮沖擊目前還沒有明確的解釋,筆者分析氨氮沖擊是因為水中游離氨(FA)過高導致的,雖然FA(游離氨)對AOB(氨氧化細菌/亞硝酸細菌)影響比較弱,但是當FA(游離氨)濃度在10~150mg/L時就開始對AOB(氨氧化細菌/亞硝酸細菌)產生抑製作用,而游離氨(FA)對NOB(亞硝酸鹽氧化細菌/硝酸菌)影響更敏感,游離氨(FA)在0.1~60mg/L時對NOB(亞硝酸鹽氧化細菌/硝酸菌)就起到的抑製作用,眾所周知,硝化反應是亞硝酸菌和硝酸菌共同完成的,對亞硝酸菌的抑制直接就可以導致硝化系統的崩潰。
解決辦法:
保證PH的情況下,下面三種方法同時進行效果更好更快
1、降低系統內氨氮濃度
2、投加同類型污泥
3、悶爆
七、溫度過低導致的氨氮超標
這種情況多發生在北方無保溫或加熱的污水處理廠,因為水溫低於硝化細菌的適宜溫度,而且MLSS沒有為了冬季代謝緩慢而提高,導致的氨氮去除率下降。
分析:細菌對溫度的要求比人類低,但是也是有底線的,尤其是自養型的硝化細菌,工業污水這種情況比較少,因為工業生產產生的廢水溫度不會因為環境溫度的變化波動很大,但是生活污水水溫基本上是受環境溫度來控制的,冬季進水溫度很低,尤其是晝夜溫差大,往往低於細菌代謝需要的溫度,使得細菌休眠,硝化系統異常。
解決辦法:
1、設計階段把池體做成地埋式的(小型的污水處理比較適合)
2、提前提高污泥濃度
3、進水加熱,如果有勻質調節池,可以在池內加熱,這樣波動比較小,如果是直接進水可以用電加熱或者蒸汽換熱或混合來提高水溫,這個需要比較精確的溫控來控制進水溫度的波動。
4、曝氣加熱,比較小眾,目前還沒遇到過,其實空氣壓縮鼓風時溫度已經升高了,如果曝氣管可以承受,可以考慮加熱壓縮空氣來提高生化池溫度。

④ 污水氨氮超標原因是什麼

樓主您好,我來為您解答:
1、氨氮超標的原因有非常多的情況,主要有系統中沒專有硝化菌的存在,屬停留時間不足,鹼度不足,曝氣量不足等。
2、硝化菌是氨氮降解的關鍵菌群,因此他們是否健康生長決定了你系統中的氨氮降解。
3、其次是硝化菌存在,停留時間不足,也就是溶解負荷不足造成的。
4、停留時間夠,但是曝氣量不足,也是不能降解氨氮,因為1個單位的氨氮需要4.5個單位的氧氣,好氧量非常大。
5、硝化菌存在,停留時間也夠,曝氣量也充足,那就是鹼度不足,鹼度不足硝化反應沒法啟動,氨氮自然不能降解。
總氮專家新爾特生物為您提供,希望對您有幫助,謝謝。

⑤ 氨氮廢水如何處理

脫出氨氮,1.加強氧化劑,可變成硝酸鹽或亞硝酸鹽,2.加鹼,加熱可以去除氨,3.用厭氧好氧生化可以除去

⑥ 氨氮超標原因和解決辦法

一、有機物導致的氨氮超標
筆者曾處理過CN比小於3的高氨氮污水,在脫氮工藝要求CN比達到4~6的情況下,需要添加碳源以提高反硝化效率。當時使用的碳源是甲醇,由於甲醇儲罐出口閥門脫落,大量甲醇流入A池,導致曝氣池泡沫過多,出水COD和氨氮顯著上升,系統崩潰。
分析:大量碳源進入A池,反硝化無法利用,隨後來到曝氣池,底物充足,異養菌在有氧環境下大量繁殖,消耗氧氣和微量元素。由於硝化細菌是自養型,代謝能力較弱,氧氣被其他細菌爭奪,無法形成優勢種群,硝化反應受限,氨氮濃度上升。
解決辦法:
1. 立即停止進水,進行悶爆處理,內外迴流連續開啟。
2. 停止壓泥,以保持污泥濃度。
3. 若有機物引起非絲狀菌膨脹,可投加PAC提高污泥絮性,投加消泡劑消除沖擊泡沫。
二、內迴流導致的氨氮超標
內迴流導致的氨氮超標,筆者遇到兩種情況:內迴流泵出現電氣故障(現場跳停仍有運行信號)或機械故障(葉輪脫落),以及人為原因(內迴流泵未試正反轉,現場為反轉狀態)。
分析:內迴流問題可歸結為有機物沖擊。缺乏硝化液迴流,A池僅有少量外迴流帶來的硝態氮,整體呈現厭氧狀態。碳源只能水解酸化,而不會完全代謝為二氧化碳釋放。大量有機物進入曝氣池,導致氨氮濃度升高。
解決辦法:
內迴流問題易於識別,可通過數據和趨勢判斷。初期O池出口硝態氮升高,A池硝態氮降低至0,PH降低等。解決方法分三種情況:
1. 及時發現問題並檢修內迴流泵。
2. 內迴流導致氨氮升高,檢修內迴流泵,停止或減少進水進行悶爆。
3. 硝化系統崩潰,停止進水悶爆,如有條件且情況緊急,可投加類似脫氮系統的生化污泥,加快系統恢復。
三、PH過低導致的氨氮超標
筆者遇到過PH過低導致的氨氮超標,原因有三種:
1. 內迴流過大或內迴流處曝氣過度,導致大量含氧量高的水進入A池,破壞缺氧環境,反硝化細菌有氧代謝,部分有機物被氧化,嚴重影響了反硝化效率。因為反硝化能補償硝化反應代謝掉的鹼度的一半,缺氧環境破壞導致鹼度生成減少,PH降低,硝化細菌適宜的PH范圍,硝化反應受抑制,氨氮升高。這種情況一些同行可能會遇到,但很少從這方面尋找原因。
2. 進水CN比不足,反硝化不完整,產生的鹼度少,導致PH下降。
3. 進水鹼度降低,導致PH持續下降。
分析:PH值降低導致氨氮超標,實際中發生的頻率較低,因為PH連續下降是一個過程,運營人員通常在未找到問題時已經開始加鹼調節PH。
解決辦法:
1. 發現PH連續下降時,開始投加鹼維持PH值,然後分析原因。
2. 如果PH過低導致系統崩潰,筆者接觸過PH在5.8~6的狀況下,硝化系統尚未崩潰,但需及時補充PH,首先將系統PH補至正常水平,然後悶爆或投加同類型污泥。
四、DO過低導致的氨氮超標
筆者運營的污水是高硬度廢水,容易結垢。曝氣器運行一段時間後,曝氣頭常堵塞,導致DO無法提升,氨氮升高。
分析:曝氣作用是充氧和攪拌,曝氣頭堵塞影響兩種功能,硝化反應是有氧代謝,需要曝氣池溶氧適宜的環境才能正常進行。DO過低導致硝化受阻,氨氮濃度上升。
解決辦法:
1. 更換曝氣頭,尤其是硬度低、操作問題導致的堵塞可考慮此法。
2. 改用大孔曝氣器(適用於氧利用率低、風機餘量大的企業)或射流曝氣器(適用於硬度高的污水,尤其是需要動力流體的情況)。
五、泥齡導致的氨氮超標
目前筆者遇到過兩種情況:
1. 壓泥過多,導致氨氮升高。
2. 污泥迴流不均衡,兩側系統污泥迴流相差過大,導致污泥迴流少的一側氨氮升高。
分析:壓泥過多和污泥迴流過少都會導致污泥泥齡降低。因為細菌都有世代期,SRT(污泥停留時間)低於世代期,細菌無法在系統中聚集,形成不了優勢菌種,對應的代謝物無法去除。一般泥齡是細菌世代期的3-4倍。
解決辦法:
1. 減少進水或悶爆處理。
2. 投加同類型污泥(通常與1、2一起使用效果更佳)。
3. 如果是污泥迴流不均衡導致的問題,在保證正常系列運行的情況下,將部分污泥迴流到問題系統。
六、氨氮沖擊導致的氨氮超標
氨氮沖擊通常發生在工業污水或工業污水進入生活污水管網的系統中。筆者之前遇到的情況是上游汽提塔控制溫度降低,導致來水氨氮突然升高,脫氮系統崩潰,出水氨氮超標,污水處理現場氨味特別濃。
分析:氨氮沖擊目前尚無明確解釋,筆者分析氨氮沖擊是因為水中游離氨(FA)過高導致的。盡管FA對AOB(氨氧化細菌/亞硝酸細菌)影響較弱,但當FA濃度在10~150mg/L時開始對AOB產生抑製作用,而FA對NOB(亞硝酸鹽氧化細菌/硝酸菌)影響更敏感,FA在0.1~60mg/L時對NOB產生抑製作用。硝化反應是由亞硝酸菌和硝酸菌共同完成的,亞硝酸菌的抑制直接導致硝化系統崩潰。
解決辦法:保證PH值的情況下,同時進行以下三種方法效果更佳、更快:
1. 降低系統內氨氮濃度。
2. 投加同類型污泥。
3. 悶爆處理。
七、溫度過低導致的氨氮超標
這種情況多發生在北方無保溫或加熱的污水處理廠。因為水溫低於硝化細菌適宜的溫度,而且MLSS沒有因冬季代謝緩慢而提高,導致氨氮去除率下降。
分析:細菌對溫度的要求低於人類,但也有底線。尤其是自養型的硝化細菌,工業污水中這種情況較少,因為工業生產產生的廢水溫度不會因環境溫度變化而大幅波動。但生活污水水溫基本上受環境溫度控制,冬季進水溫度很低,尤其是晝夜溫差大,往往低於細菌代謝所需的溫度,導致細菌休眠,硝化系統異常。
解決辦法:
1. 設計階段將池體做成地埋式(適用於小型的污水處理)。
2. 提前提高污泥濃度。
3. 進水加熱,如有勻質調節池,可在池內加熱,波動較小,如果直接進水,可使用電加熱或蒸汽換熱或混合加熱來提高水溫,需要精確控制進水溫度的波動。
4. 曝氣加熱,較為少見,目前未遇到過。實際上,鼓風曝氣時溫度已升高,如果曝氣管能承受,可考慮加熱壓縮空氣來提高生化池溫度。

⑦ 污水處理中氨氮高怎麼處理

利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。例如:氣水分離膜脫除氨氮。氨氮在水中存在著離解平衡,隨著PH升高,氨在水中NH3形態差純比例升高,在一定溫度和壓力下,NH3的氣態和液態兩項達到平衡。根據化學平衡移動的原理即呂.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相對的和暫時的。化學平衡只是在一定條件下才能保持「假若改變平衡系統的條件之一,如濃度、壓力或溫度,平衡就向能減弱這個改變的方向移動。」遵從這一原理進行了如下設計理念在膜的一側是高濃度氨氮廢水,另一側是酸性水溶液或水。當左側溫度T1>20,PH1>9,P1>P2保持一定的壓力差,那麼廢水中的游離氨NH4+,就變為氨分子NH3,並經原料液側介面擴散至膜表面,在膜表面分壓差的作用下,穿越膜孔,進入吸收液,迅速與酸性溶液中的H+反應生成銨鹽。

全程自養脫氮的全過程實在一個反應器中完成,其機理尚不清楚。Hippen等人發現在限制溶解氧(DO濃度為0.8·1.0mg/l)和不加有機碳源的情況下,有超過60%的氨氮轉化成N2而得以去除。同時Helmer等通過實驗證明在低DO濃度下,細菌以亞硝酸根離子為電子受體,以銨根離子為電子供體,最終產物為氮氣。有實驗用熒光原位雜交技術監測全程自養脫氮反應器中的微生物,發現在反應器處於穩定階段時即使在限制曝氣的情況下,反應器中任然存在有活性的厭氧氨氧化菌,不存在硝化菌。有85%的清慶銷氨氮轉化為氮氣。鑒於以上理論,全程自養脫氮可能包括兩步第一是將部分氨氮氧化為煙硝酸鹽,第二是厭氧氨氧化。

⑧ 污水處理措施

污水處理主要是指通過污水處理工藝以及技術,食物水達到城鎮污水處理廠污染物排放標準的過程。
1通過對污廢水水質進行分析,進入污水處理廠的污水主要包括懸浮物SS、有機污染物CODCR、無機營養鹽N/P等等。活性污泥法是城市污水處理的最經濟、最有效的方法。
污水處理廠廣泛應用傳統的活性污泥法處理工藝,能夠有效地對BOD、COD和SS進行處理。但是這種工藝對污水中的氮和磷的去除,就有技術的局限性。對於氮和磷的去除工藝,主要採用污水脫氮、除磷工藝的污水處理方法。
在污水脫氮除磷工藝處理過程中,通常有生物處理法和物理化學法兩種工藝。物理化學法主要存在消耗葯量大、污泥產生多、污水處理運行費用比較高的缺點。傳統的活性污泥法對污染物的去除主要是通過微生物培養和生物吸附進行分解代謝,達到污水處理的效果。
1.1活性污泥處理工藝
城市污水進入污水處理廠後,通過截流井流入粗格柵進入沉砂池,經過沉澱污水流入生化池,投入培養的生物菌,通過生化池曝氣工藝處理,進行污泥、污染物的吞噬,沉澱;在流入細濾池,進行紫外線的消毒,污水達到排放標准。生化池、沉澱池中的污泥部分送入污泥脫水車間進行脫水處理,進行外運、填埋處理的過程。
目前,比較成熟的工藝厭氧—缺氧—好氧活性污泥法。污水通過流經不同的功能區間,在不同的微生物的作用下,使污水中的氮和磷、有機物等達到去除的目的。
1.2通過厭氧、好氧的生物菌群的培養,微生物達到快速繁殖的效果,能夠有效的把污水中的氮和磷進行吞噬,通過曝氣系統的曝氣進行氧氣的
供應,促進微生物快速的吞噬污水中的污染物。在沉澱池中進行污泥沉澱,這種處理工藝能很好的達到去除氮和磷的效果。
在污水中COD、N/P是影響污水中的氮磷去除的重要因素,脫磷除氮的工藝處理中,曝氣環節必不可少。
1.3污水中SS的去除
SS是指污水中的懸浮固體物,這種物質不溶於水,在條件具備的情況下,能進行沉澱。SS又分為無機物和有機物兩種,在污水處理工藝上,主要採用二沉池表面負荷、利用活性污泥的懸浮層,以及螯合作用把廢水中的SS去除。運用合理的工藝能使污水出水指標達到SS出水指標。
1.4污水中BOD5的去除
BOD5是指生化需氧量,在污水處理環節中,微生物的繁殖、分解過程中對氧氣的需求的數量。污水中的BOD5的去除,主要是通過微生物的分解、吸附以及微生物的代謝,達到污水中泥水的分離,在進行沉澱,達到去除的目的。
1.5污水中CODCR的去除
CODCR是生化需氧量,主要是指在污水處理中的微生物的分解、代謝過程中,需要的氧氣的數量。去除方法和BOD5的去除方式相同,是通過微生物的分解、代謝及吸附功能,達到泥水分離的效果,對溶解性有機物需要靠微生物的代謝來完成,活性污泥中的微生物在有氧的條件下,將污水中一部分有機物進行分解代謝以便獲得細胞合成所需的能量,最終產物是CO2和H2O等穩定物質。
在這種合成代謝與分解代謝的過程中,溶解性有機物(如低分子有機酸等)直接進入細胞內部被利用,而非溶解性有機物則首先被吸附在微生物表面,然後被酶水解後進入細胞內被利用,由此可見,微生物的好氧代謝作用對污水中的溶解性有機物和非溶解性有機物都起作用,並且代謝產物均為無害的穩定物質,因此可以使處理後污水中的殘余BOD5濃度很低。
1.6氧化溝工藝構造簡單、易於維護管理,得到廣泛應用,到目前已發展成為多種形式。Carrousel氧化溝系多溝串聯系統,在溝體內存在缺氧區和好氧區,但是缺氧區要求的充足的碳源和缺氧條件不能很好地滿足,因此,脫氮效果不是很好。為了提高脫氮效果,在溝內增加了一個預反硝化區,從而形成了Carrousel2000型氧化溝工藝。

閱讀全文

與廢水脫氮消耗氧氣量相關的資料

熱點內容
2015年廣西全區廢水排放量合計 瀏覽:543
如何除掉廢水中少量的乙酸 瀏覽:447
濟南工業廢水坑 瀏覽:824
天津市自來水污水處理費 瀏覽:299
三步並行提升伺服器 瀏覽:446
鹽城除塵器濾芯多少錢 瀏覽:279
離子交換層析提純蛋白質 瀏覽:260
納濾水和凈水區別 瀏覽:184
溫度對ro膜壓差的影響 瀏覽:535
小清河為什麼污水不清 瀏覽:42
廢水分離鎳 瀏覽:669
凈水機換濾芯怎麼操作 瀏覽:263
補牙能在玻璃離子上補樹脂嗎 瀏覽:860
汽車明銳空調濾芯怎麼換 瀏覽:567
凈水器進水最低壓力是多少 瀏覽:229
定興污水處理供水設備多少錢一套 瀏覽:17
地下室廚房油污提升泵 瀏覽:522
內置提升器 瀏覽:637
納濾凈水器的水長期飲用好嗎 瀏覽:954
即熱飲水機是什麼 瀏覽:615