導航:首頁 > 污水知識 > 礦山廢水鐵超標

礦山廢水鐵超標

發布時間:2024-12-25 03:05:10

㈠  礦山地質環境問題的成因分析

礦業開發或多或少會對地質環境造成影響破壞,有些礦山地質環境問題的產生具有必然性,有些礦山地質環境問題的產生則與礦業行為的規范程度關系密切,總而言之,導致湖南省礦山地質環境問題產生的因素主要有采礦行為、采選冶及治理技術以及自然因素。

一、采礦行為因素

礦業開發活動過程中,地下開採掘進及主動放頂、礦山地面工程建設、露天采場開挖及表土剝離等采礦行為,很難避免采空地面變形、地下水位下降、土地資源佔用破壞等礦山地質環境問題的發生,這是礦業活動的基本屬性所致。但規范的礦業活動或礦業活動過程中事先主動採取有效的礦山地質環境防護措施,將大大減少或消除采礦活動對礦山地質環境的破壞程度,即使產生破壞,其恢復治理也較容易。綜合分析,目前湖南省因采礦行為不恰當而導致大量環境問題發生的主要方面有:

1.過度開采、掠奪式開采

受「大礦大開,小礦放開,有水快流,大力鼓勵民營經濟發展」思想的影響,礦業發展無序,高峰時期,湖南省各類礦山近兩萬處。據不完全統計,1998年,湖南省各類大小礦山達12417座,且還有不少非法開采、民采礦硐。一些礦山企業或私人團伙見礦就采,盲目亂采濫挖,越層越界,不留設甚至偷采保安礦牆(柱)等現象十分嚴重,導致全省礦山地質環境問題急劇爆發,為早期礦山地質環境問題惡化的主要原因。

2.環保意識薄弱,過度追求經濟效益

為了追求經濟效益最大化,歷史上,不顧環境和他人利益,開采過程中不重視環境的保護及預防。主要表現為:廢渣隨意堆放而不惜佔用農田、水庫、河谷;廢水肆意排放而不採取任何凈化措施;居民區、重要設施區及基本農田下方開采而不留設保安礦柱,形成超深、超寬的采空區;不合法采礦權人或非法個人盜采保安礦柱等。

3.礦山地質環境保護方面技術人員匱乏

現有的眾多小礦山,或無環境保護方面的技術員,或已有的技術人員水工環專業知識欠缺,對礦床水文地質條件、工程地質條件及其復雜性等開采技術條件不了解或認識不足,對可能引發的地質環境問題不會科學合理採取相應的預防措施,不自覺造成了對礦山地質環境的破壞,這是造成湖南省礦山地質環境問題的一個重要因素。

4.地方保護主義思想過重

在一些地方,礦產資源開發成為當地的主要經濟支柱,是地方財政的最大來源。歷史時期,部分地方政府和部門片面理解「發展才是硬道理」,存在「先發展起來,再改善生態和保護環境」的錯誤認識,對礦產資源管理秩序整頓、關停小礦山、保護礦山地質環境的要求執行不力,加重了礦山地質環境的破壞。

二、技術因素

1.礦山采、選技術落後,加劇了礦山地質環境問題的發生

受礦產資源稟賦條件限制,礦山開采技術落後,採用落後的「崩塌法」、「放大炮」等開采技術,造成了地面塌陷、崩塌、滑坡等地質災害。部分井下開采礦山的探水技術落後,對老窯、老采空區、岩溶管道探測不完全而發生突水突泥事故,從而造成地面塌陷的發生。選礦工藝簡單落後,如省內曾存在大量土法采選金礦、土法煉汞、煉砷、煉硫、煉礬、煉鉛鋅、氰化選礦的礦山,對礦山地質環境造成了污染。全省很多礦產資源,特別是有色金屬資源,共(伴)生礦多、貧礦多,由於選礦技術落後,資源綜合利用水平低,總回收率僅40%左右,綜合利用水平低,不僅浪費資源,增加固體廢棄物排放量,而且增加了尾砂中重金屬的排放,加重了環境影響的程度。

2.廢渣、廢水綜合利用程度低,礦山地質環境恢復治理技術落後

礦業活動過程中有大量廢渣、廢水排放,對其綜合利用,不僅能變廢為寶,節約資源,而且能有效保護礦山地質環境。湖南省礦山廢渣、廢水的綜合治理率不高,礦山廢渣綜合利用率為26.83%,廢水綜合利用率為11.89%。同時,目前全省礦業廢渣、廢水綜合治理利用的技術水平較低,方法工藝較落後。礦山地質環境恢復治理是一項專業性和技術性很強的工作,但當前礦山地質災害防治和礦區土地復墾技術研究還很薄弱。如地面變形監測可有效預防地面塌陷、采空地面變形對地面設施的破壞,但目前地面變形監測尚處於探索研究階段,而沒有一套完整經濟適用的監測技術體系及早掌控地面形變。就土地復墾而言,采礦廢水、廢渣造成的以重金屬污染為代表的水土污染治理難度大,目前沒有形成一套普適性的治理技術來恢復治理已污染破壞的土地,致使已破壞土地的恢復治理進度十分緩慢。

三、資金因素

歷史上,由於采礦權人追求經濟效益最大化,往往不主動對礦山地質環境破壞的風險進行及時防控。即使問題已經產生,但並不投入足夠的資金進行治理恢復,從而導致大量的環境問題遺留。雖然近十年國家及地方政府和采礦權人對礦山地質環境問題已投入了大量的治理資金進行治理,但歷史欠賬多,治理面積有限。

四、自然因素

礦業活動破壞了礦山地質環境平衡條件是造成礦山地質環境問題的根本原因,但湖南省礦山地質環境條件脆弱是礦業活動容易導致礦山地質環境問題加劇的另一因素。

(一)氣象與水文

湖南省降水量豐富,但年分布不均,全省多年平均降水量為1426.6mm,最大可達3089mm。由於大氣降水豐沛,雨量集中,常出現暴雨,日最大降雨量達423.1mm。降雨是湖南礦山產生崩塌、滑坡、泥石流、地面塌陷及水土流失的一個重要因素。氣候條件十分有利於岩石的風化作用,許多礦區岩石風化強烈,降低了岩體的完整性和穩定性;同時,強烈的風化作用也降低了廢石堆的穩定性,容易產生礦山地質災害。湖南季風變化大,夏、秋季乾燥風大,是尾礦庫產生揚塵污染的原因之一。地表水系發育,河網密布,許多礦區地表水與地下水之間具有水力聯系,地表水往往成為礦井充水、突水的主要來源。尤其是極端天氣的出現,如久旱逢暴雨,隨之產生大量的礦山地質環境問題。

(二)地形地貌

地形強烈切割的深溝大川是崩塌、滑坡最有利的發生地段;各級階地和剝夷面間的斜坡地帶,崩塌、滑坡也十分發育;上下陡、中間緩的折線山坡,當山坡上部成馬蹄形環狀地形且匯水面積大時,易產生沿基岩面滑動的土層滑坡。湖南有色金屬礦床多產於崇山峻嶺之中,復雜的地形條件易發生崩塌、滑坡、泥石流地質災害。

(三)礦床地質環境條件

湖南省能源礦產賦礦層主要為二疊系龍潭煤系、石炭系測水煤系,其次為二疊系吳家坪煤系、二疊系黔陽煤系、上三疊統、下侏羅統含煤岩系等。各含煤岩系岩性主要為粉砂岩、頁岩、泥岩夾砂岩或互層,頁岩、泥岩力學強度低,礦井工程地質條件大多為中等至差;而龍潭煤系北型、吳家坪煤系、黔陽煤系頂板、底板或頂底板為岩溶發育且富含岩溶地下水的碳酸岩鹽,斷裂構造發育且導水性強,水文地質條件及礦區構造大多復雜。建築材料礦山的石膏礦產主要賦存層位有下石炭統梓門橋組、白堊系、古近—新近系,其中梓門橋組含膏岩系直接頂板為岩溶發育中等至強烈的梓門橋組上段灰岩,間接頂板為岩溶強發育的壺天群,水文地質條件大多為復雜至中等,白堊系及古近—新近系含膏岩系岩性多為泥岩、粉砂岩,岩石固結程度較低,岩體力學強度低,礦床工程地質條件大多較差。湖南省柿竹園多金屬礦、黃沙坪、寶山、水口山鉛鋅礦、七寶山金銀黃鐵礦等主要有色金屬礦床均為接觸交代型礦床,其容礦層位均為岩溶發育的碳酸岩鹽,水文地質條件復雜,花垣鉛鋅礦賦礦層位亦為寒武系下統清虛洞組灰岩,地下河等岩溶極發育。當開采上述礦產資源時,由於工程地質條件差,易引發采空區地面變形礦等礦山地質災害;水文地質條件復雜,則易產生岩溶地面塌陷,並導致含水層結構破壞。這也是湖南省采空區地面變形災害主要與測水煤系煤礦山、龍潭煤系(南型)煤礦山、石膏礦山有關及岩溶塌陷、含水層結構破壞主要與龍潭煤系(北型)、吳家坪煤系、黔陽煤系煤礦山、柿竹園多金屬礦、黃沙坪、寶山鉛鋅礦、七寶山多金屬礦等有色金屬礦山有關的重要因素。

湖南省露天開采礦山絕大多數為砂石黏土礦山,花崗岩、石灰岩、石英岩等採石場,風化程度高,當節理、裂隙發育,開采形成較陡峻的臨空面時,易發生崩塌;采砂場、磚瓦廠、高嶺土礦、紅土型金礦、淋積型錳礦開采對象為第四系土(砂)體,土體力學強度低,遇水易軟化,采場邊坡易發生崩滑現象;此外,石煤礦大多露天開采,部分沉積型鐵礦、磷礦也有露天開采礦山,賦礦層位主要為震旦系至寒武系的江口組、陡山沱組、小煙溪組,岩性多為板岩、炭質板岩、砂質板岩,除層理外,板理、劈理均較發育,淺部風化節理十分發育,采場邊坡易發生滑坡與崩塌。同時,采場剝離廢石及采礦廢石量較大,往往成為泥石流的物質來源。

有色金屬及石煤礦山的廢渣、廢水中含大量重金屬元素及放射性元素,化工鹽類礦山廢渣、廢水中含鹵族元素,中高硫煤礦山及硫鐵礦山廢渣、廢水中含大量黃鐵礦,均是礦山水土污染的污染物來源。

㈡ 水資源保護及水污染防治

礦山開采和礦石選冶對水資源地的破壞和水污染都是嚴重的。開礦不可避免地要疏干、排泄一定的地下水,使地下水水位較原始水位大幅度下降,降低原有水源的供水能力。開礦也會不同程度地污染地表及地下水系,使之降低了使用功能。廢石與尾礦露天堆放,氧化淋溶可形成酸性水,酸性水及其攜帶的有害物質流入地表水系或滲入地下潛水層,污染水資源。選礦廠的廢水同樣也會對地表、地下水源造成污染。

陝西鳳縣四方金礦選礦廠的尾礦中有毒有害物質對水、土、植被造成了污染,危害人體健康。尾礦在尾礦庫中蒸發、滲透、沉澱、澄清、自然凈化,通過庫內溢流排到壩前回水池,在回水池用活性炭處理後,大部分經回水泵站用管道輸送至選礦廠磨礦、浸出供生產系統循環利用。為防止尾礦水污染環境,對外排放的尾礦水應採用石灰、次氯酸鈉和沉澱池處理法,在鹼性條件下,使氰化物氧化、生成二氧化碳和氮氣逸出,降低CN-濃度,金屬離子生成氫氧化物沉澱後達標再排放,采礦廢水經沉澱處理,採取以上措施可做到達標排放。對回用尾礦水採用活性炭處理,去除影響金浸出的部分重金屬,保證尾礦水循環利用於生產中,並同時回收了微量金,每年回收金達1 kg以上。該工藝設備簡單,投資少,成本低,且活性炭經處理可循環利用,從源頭上減輕了對西河的污染。

地表水系的污染往往是直接的,尤其是流動的徑流,會很快通過徑流自凈化作用而降低或消除污染。如果河床底泥中污染物達到飽和,污染河段就會加長,污染的范圍就會擴大,但總體而言,治理相對容易。而地下水的污染涉及到巨厚的滲透層及下滲通道的污染飽和,加之過程十分緩慢,因而地下水污染具有隱蔽性和難以恢復性。由於地下水的流速、補給、交換緩慢,切斷污染源後,仍需幾十年甚至數千年的時間,才有可能恢復。因此,地下水一旦遭到污染,便很難治理及恢復。如果人們飲用了受有害或有毒組分污染的地下水或食用了受污染土地生長的植物,對人體的影響將是慢性的長期效應,不易覺察。

神東礦區採用生物固沙和工程防護措施,在礦區烏蘭木倫河的支流考考賴溝、哈拉溝、石圪台溝等主要生產生活水源地實施了水源治理保護工程,在源頭層層設防,束水歸槽,完成了治理面積1467ha。經測定,治理前後,考考賴溝水源地水中含沙量由6.4 kg/t下降到0.2kg/t,哈拉溝和石圪台溝水源地水中含沙量由14.7kg/t下降到0.15kg/t,每年可節約水廠排沙費166萬元,兩年多即可收回治理投資。4個水源地每天涌水量41000t,治理後每年減少入河泥沙量15.6×104t。

為解決礦山廢水所造成的危害問題,必須採取各種措施和方法,嚴格控制廢水排放,盡量減少對周圍環境的水污染。

5.4.4.1 改善和處理廢水污染工藝技術

礦山廢水排放的特性,決定了廢水處理的原則是:採用有效簡便和經濟的處理方法,使處理後的水和重金屬等物質都能回收利用。故應做到以下幾點基本要求:

——改進工藝,減少污染源:改進工藝是最根本、最有效的杜絕或減少污染源產生的途徑。如某鉛鋅礦,過去一直採用氰化鈉作為鉛鋅分選的抑制劑,致使尾礦水和鉛鋅精礦濃縮溢流水含氰量大大超過排放標准,先後污染了幾千畝農田,造成了大量牲畜及水生物的死亡,現改成無毒浮選工藝,採用硫酸鋅代替氰化鈉,不僅減少了污染危害,而且也提高了選礦廠的經濟效益。

——循環用水,一水多用:採用循環供水系統,使廢水在生產過程中多次重復利用,既能減少廢水的排放量,減輕環境污染,又能減少新水的補充,節省水資源。如河北某銅礦,每天排放廢水達兩千餘噸,過去直接排入渤海,引起近海水資源的污染,後來該礦進行了選礦工藝改進,加高了尾礦壩,開鑿了1000多米地下隧道,架設了幾百米的污泥管道,使尾礦溢流水利用高差自流到選礦廠循環利用,使水的回收率達到90%以上,基本實現了廢水閉路循環使用。

5.4.4.2 控制礦山廢水排放量的有效措施

採取「防」、「治」、「管」相結合的方法,嚴格控制廢水的形成和排放,是控制和減輕水污染的積極措施。

(1)選擇適當的礦床開采方法:地下采礦時,選擇使頂板及上部岩層少產生裂隙或不產生裂隙的采礦方法,是防止地表水通過裂隙進入礦井而形成廢水的有效措施。露天開采時,應盡量避免採用陡峭邊坡的開采方法,以減輕邊坡遭水蝕及沖刷現象;及時覆蓋黃鐵礦的廢石,以防止氧化;下邊坡應留礦壁以防止地面水流入采場;可能情況下應回填采空區,以免積水;合理布置采礦場排水溝。

(2)控制水蝕及滲透:地下水、老窿水、地表水及大氣降雨滲入廢石堆後,流出的將是受嚴重污染的水。因此,堵截給水、降低廢石堆的透水性,是防止和減少水滲透的有效措施。高速水流經廢石堆時會出現水蝕現象,使水受污染。將廢石堆整平、壓實,修建導水渠,是防止廢石堆水蝕的有效方法。此外,利用某種化學物質噴灑硫化礦廢石堆表面,使之與空氣和水隔絕也是控制水污染的有效措施。

(3)控制廢水排放量:在乾燥地區可建造池淺而面積大的廢水池蒸發廢水,這對排水量大的礦山是減少廢水處理量的合理措施。

(4)平整礦區及植樹綠化:平整遭受破壞的土地,可以收到掩蓋污染源、減少水土流失、防止滑坡及消除積水的效果。植被可以穩定土石,降低地表水流速度,因而能在一定程度上減少水土流失、水蝕及滲透。讓廢水流經某些種植植物的地面後排入河流,也能使礦井水得到一定程度的凈化。

5.4.4.3 廢水處理系統和工藝流程

正確選擇廢水處理系統和工藝流程應從以下幾點入手:

——廢水的水質及水量特徵是正確選擇處理系統的出發點。從廢水的種類來說,需要考慮採用混合處理還是單獨處理方式,或是單獨處理一定程度後再混合處理;從排水量及排水規律來說,需要考慮是否要設置蓄水池、混合池,是連續還是間歇運行等;從污染物質種類和濃度來說,需要考慮和分析的內容就更多,因為這是選擇處理方法和處理設備的主要依據,例如,當污染物為膠體時,要考慮採用混凝、氣浮、生物絮凝等方法;當污染物為溶質時,就要考慮採用化學沉澱、萃取、離子交換等物理化學方法;如果有幾種污染物存在,就要考慮用一種方法還是用幾種方法聯合處理問題;若污染物濃度足夠高,具有回收價值,就應選擇能回收利用有價值成分的方法。

——廢水處理後的利用或排放以及對水質的具體要求是決定和選擇處理系統的關鍵。提出若干技術上可行的處理方案,進行技術經濟綜合比較,認真分析和論證,確定出最優和次優方案,以備選用。

5.4.4.4 酸性礦井水污染治理方案擇優

某礦井排放的酸性水,水質pH值為2.6,總鐵含量為300mg/L,出水量為40~100t/h,該水如不經處理就外排,將會污染附近河流和農田,影響農作物生長,引發礦山與當地居民的矛盾。

對該礦所排酸性水污染可用以下三個方案加以治理。

(1)P1方案——石灰乳中和法:酸性水用耐酸泵提升到中和反應池,同時加入5%的石灰乳,與酸性水接觸反應,調節石灰乳加入量,控制pH值為6.5左右,再進斜管沉澱池進行泥水分離,上層清水排入清水池,或直接外排,污泥排放到污泥池,再用泥漿泵泵入污泥干化池,進行干化處理。此法操作較困難。

(2)P2方案——石灰石中和滾筒法:酸性水用耐酸泵提升到裝有一定粒徑(粗粒、細粒)的石灰石的中和滾筒內,與石灰石充分反應後其pH值達6.2左右。出水加入絮凝劑,進入沉澱池進行泥水分離,上層清水排入清水池回用或外排,污泥排放到污泥池,再用泥漿泵泵入污泥干化池,進行干化處理,此法操作較簡單。

(3)P3方案——石灰乳-石灰石中和塔法:酸性水先與石灰乳中和到pH值為4 左右,使鐵基本上形成Fe(OH)2,然後進入石灰石中和塔進行中和反應,出水pH值達6.0以上,然後進入沉澱池進行泥水分離,上層清水排入清水池回用或外排,污泥排放到污泥池,再用污泥泵泵入污泥池,進行干化處理,此法適合處理各種酸性礦井水,尤其是水中含Fe2+較多時適用,可減少石灰用量,勞動條件也有所改善。

用多目標模糊決策法對上述三個可行方案進行擇優,即三個被評價方案的集合為:U={P1,P2,P3}

選用以下4個評價因素指標:①工程總投資 fl;②運行費用 f2;③出水 pH 值 f3;④工作條件f4

其中工作條件一項屬定性指標,由專家給出評分,好的記0.85 分,較好的記0.55分,不太好的記0.25分。

各因素的重要程度權值模糊子集:A=(a1,a2,a3,a4)

各因素的重要程度權值a1、a2、a3和a4,可用以下三種方法確定:①德爾斐法(專家評估法);②專家調查法;③判斷矩陣分析法。不論用哪種方法,對參與專家要求有淵博的專業知識,且富有實際工作經驗,熟悉並掌握所研究問題的全部具體情況。

根據以上所提出的有關數據可得各方案的因素指標矩陣F(表5-8)。

表5-8 各方案因素指標矩陣F

5.4.4.4.1 加權相對偏差距離最小法擇優

各因素指標權值模糊子集:

A=(a1,a2,a3,a4)=(0.10,0.30,0.40,0.20)

我們把第i個方案的第j個因素指標值記為fij,則得m個方案的n個因素指標矩陣F。

中國西北地區礦山環境地質問題調查與評價

由各方案的因素指標矩陣F 得知,各因素指標的標准值(三個方案中最有利的值)向量為:

fi°=(f1°,f2°,f3°,f4°)=(86.9,0.39,6.5,0.85)

式中: fimax為各方案第i 項因素指標中最大指標值,即 fimax=max(fi1,fi2,fi3,…,fim)

fimin為各方案第i 項因素指標中最小指標值,即 fimax=min(fi1,fi2,fi3,…,fim)

中國西北地區礦山環境地質問題調查與評價

正指標是指指標值越大方案越優的因素指標,負指標是指因素指標值越小方案越優的因素指標,我們把δij稱為相對偏差值,稱f°為標准值。

得出相對偏差模糊矩陣Δ:

中國西北地區礦山環境地質問題調查與評價

例如:

,根據加權相對偏差距離公式,即

中國西北地區礦山環境地質問題調查與評價

代入數據:

中國西北地區礦山環境地質問題調查與評價

同理算出d2=1.114,d3=1.791

加權相對偏差距離最小法是以dj最小的方案為最優,因為min(d1,d2,d3)=d2,所以P2方案為最優,P1方案次之,P3方案最差。

5.4.4.4.2 定量指標綜合決策法擇優

據三個方案各因素定量指標矩陣:

中國西北地區礦山環境地質問題調查與評價

式中:di為第i項因素級差值,

γij為就第i項因素著眼對j個方案的評價值。

代入有關數據算出d1=30.222,d2=0.044,d3=0.556,d4=0.667,進而算出各個γij值,三個方案的4個評定值組成一個評價模糊矩陣:

中國西北地區礦山環境地質問題調查與評價

已知因素重要程度權值模糊子集

=(a1,a2,a3,a4)=(0.10,0.30,0.40,0.20)

採用加權平均模型M(·,+)對方案進行評價:

=

=(b1,b2,b3)

其中

代入數據:b1=0.10×1+0.30×0.1+0.40×1.0+0.20×0.1=0.550

同理算出:b2=0.604,b3=0.406

max(b1,b2,b3)=b2,b2對應方案P2。模糊綜合評價中,按照最大隸屬度原則,方案P2為最優,方案P1次之,方案P3最差,這一結果與加權相對偏差距離最小法所求得的結果相同。

㈢ 能源礦山環境地質問題

西南地區共有能源礦山有6769個,占礦山總數的32.1%。其中雲南1483個,四川1567個,貴州2395個,西藏8個,重慶1316個。

能源礦產主要指煤炭。分布在貴州西部地區,其次是渝西、滇東北、四川盆地、川東南和川西南攀枝花地區。重要的煤礦企業有水城煤礦、六枝煤礦、盤縣煤礦、遵義煤礦、安順煤礦、天府煤礦、永榮煤礦、松藻煤礦、南桐煤礦、中梁山煤礦、昭通煤礦、宣威煤礦、富源煤礦、小龍潭煤礦、一平浪煤礦、曲靖煤礦、廣旺煤礦、芙蓉煤礦、寶頂煤礦等,其他小型煤礦企業星羅棋布。

能源礦山主要為井下開采,采空區范圍較大,易造成地面塌陷、地裂縫等地質災害,同時疏乾地表水,造成用水困難。同時,在煤礦開采中有大量的煤矸石堆放,降水對其淋濾產生大量的硫酸等污染地下水和周圍土壤,其中的硫因蒸發或煤矸石自燃後還會排放H2S,SO2,CO2等各種有害氣體而嚴重污染大氣。大量煤矸石占壓土地,據初步統計,西南地區以能源礦山占壓和破壞的土地面積最多,為121706.49hm2,占總占壓面積的61.2%。煤矸石還易在暴雨季節造成滑坡、泥石流地質災害。能源礦山礦坑突水亦比較嚴重。西南地區能源礦山環境地質問題比較突出的是重慶市和貴州省,其次是四川省和雲南省,再次是西藏。重慶市發生的254次礦山地質災害中能源礦山就有230次,占總災數的90.6%,直接經濟損失3.68億元,占總損失的96.08%,死亡人數118人,占總死亡人口數的90.8%。重慶市各類礦山地質災害中損失最大的亦是能源礦山的礦坑突水,僅2002年6月13日南桐煤礦發生礦坑突水直接經濟損失達2億元,占重慶市總損失的52.2%。

(一)能源礦山地質災害

1.能源礦山地面塌陷、沉降、地裂縫地質災害

能源礦山地面塌陷主要與采空區有關。國有煤礦山如重慶松藻南桐煤礦、貴州六盤水煤礦采深多數在150m以下,大面積的采空區地表發生沉降、拉張變形和塌陷嚴重,影響和破壞了地面建築和道路設施,造成很大的經濟損失和人員傷亡。

(1)重慶松藻南桐煤礦山地面塌陷

1)基本概況。據《重慶市礦山地質環境調查與評估報告》資料,松藻、南桐礦區共有塌陷坑30處,分布面積約2.5km2,主要分布於松藻、南桐礦區的采空范圍內,發育於碳酸鹽岩分布區。

塌陷在地表變形表現為塌陷坑、沉降和開裂3種形式。

區內塌陷坑的平面形態以橢圓形和似圓形為主,個別為長條形,規模3~200m2不等,剖面形態以下小上大的柱狀和漏斗狀為主,其柱面傾角(與圍岩的接觸面,含漏斗面)多在60°~80°之間,部分為40°~50°。塌陷深度數米至數十米不等,一般在十餘米。如南桐礦區的水井灣煤廠塌陷,最大直徑200m,最大塌陷深度30m,20餘戶村民被迫搬遷。塌陷區深部為硯石台煤礦采空區。

地面沉降是繼塌陷區之後形成的,具有影響范圍廣、分布面積大的特點。沉降形態多數似鍋狀或碟狀,下降幅度數厘米,沉降區內開裂、塌陷分布普遍,數量較多,典型的如重慶南桐化工廠,整個工廠大多位於沉降區內,其車間、辦公樓、圍牆、地面等開裂、塌陷隨處可見,損失巨大。

地面開裂是塌陷和沉降的伴生產物,涉及范圍更廣、數量更多,其形狀為直線形、弧形或封閉形,多分布在塌陷區范圍,開裂長度3~130m,裂縫寬1.5~40cm,裂口面陡傾,傾角80°~90°,傾向一般指向塌陷中心。除前述的南桐化工廠外,區內的松藻礦務局打通煤礦第一礦渣場附近的裂縫帶,亦屬典型塌陷引起的地面開裂。

塌陷坑、沉降、裂縫這3種礦山地質災害具有密切的內在聯系,表現為塌陷坑、裂縫發生在沉降區內,而裂縫又是圍繞著沉降中心或塌陷坑呈弧形展布,塌陷坑則位於沉降區的中心。

2)危害性。重慶市煤礦塌陷區主要涉及萬盛區、綦江縣、南川市3個區(縣),受災居民23147戶,60268人,住宅面積1368139m2;沉陷影響學校32所,面積12411m2;影響醫院10所,面積32652m2;毀壞道路149.13km;毀壞供水管道487.02km,水池、水庫342座,泵房16座。

3)成因分析。①地下水疏干引起的地面塌陷。礦山可溶岩地區存在岩溶洞穴或溶蝕裂隙,地下水在疏乾的過程中,水位不斷降低,水動力條件逐漸改變,從而使地下水對上覆土體的浮托減小,水力坡度增加,水流速度加快,水的搬運侵蝕作用加強。疏干初期溶洞充填物在地下水的侵蝕、搬運作用下被帶走,擴展了水流通道;隨之其上覆土體在潛蝕、侵蝕作用下垮塌、流失而形成拱形崩落和隱伏土洞;土洞不斷向上擴展,使上覆土體在自重壓力超過洞體的極限抗壓、抗剪強度時,地面則沉降、開裂並發展成為塌陷。②采空區破壞形成的地面塌陷。地下開采形成的采空區主要由保安柱支撐其上覆岩體的重量,如果保安柱設計合理,則整個保安柱系統和井巷是穩定的,如果設計尺寸偏小,或在某一長期承載過程中由於風化、地震及累進性破壞等必然性偶然因素的影響,使保安柱中的應力超過其極限承載能力,則該保安柱將首先破壞,並帶動其他保安柱累進性遭到破壞,其結果必將導致整個預留礦柱系統的破壞,從而進一步塌落導致地表形成塌陷。

當采空區的保安柱系統累進破壞達到60%以上,采空區頂板即發生冒落。冒落形成的塌陷范圍一般比采空區大,開采水平煤層形成的塌陷坑多和采空區相對稱,即塌陷中心即為采空中心;而開采傾斜煤層時,塌陷坑向下山方向偏移,在垂直走向的斷面上,塌陷與采空區的位置互不對稱。這一特點應引起安全防範重視。

(2)貴州省六枝、盤縣、水城煤礦山地面沉降

1)基本特徵。能源礦山采空區地面沉降是貴州省西部煤炭資源分布區發生的較為普遍的一種礦山地質災害。該區地面沉降55處,其中中型1處,占總數的1.82%,其餘均為小型,占總數的98.18%。

2)危害及損失情況。根據對盤縣、水城、六枝三大煤電集團下屬19個煤礦采空區地面沉降破壞情況資料(表3-17)(徐文等,2006),19個煤礦的地面沉降共破壞耕地28.50km2、林地4.36km2,破壞各類公路418km,造成310多個村寨或城鎮房屋子開裂,直接經濟損失約5.78億元。

3)礦山采空區地面沉降成因分析。礦山采空區地面沉降是在井下開采過程中,使礦層采空區周圍岩體中原始應力平衡狀態遭到破壞,在應力重新分布達到新的平衡狀態過程中,礦層頂板發生了變形、下沉、垮塌、移動,這些變化波及地面,導致地面出現了地裂縫、地面沉降,並引起山體崩塌、滑坡、水源枯竭,嚴重地破壞了礦山的土地資源。

2.能源礦山滑坡地質災害

能源礦山的滑坡常與煤矸石堆放不當有關,如重慶東林煤礦、貴州西部煤礦山,碎石、煤粉堆積高達200m,體積達100×104m3,長期日曬雨淋,含水量增高,重量增大,內聚力和內摩擦力減少,造成堆積體穩定性破壞形成滑坡。這類滑坡在黔西地區有30多個。另一部分滑坡與斜坡坡腳失穩有關,如四川南部敘永地區太平村等地小煤礦常形成此類滑坡。一般以中小型為主,大型較少。

表3-17 盤縣、水城、六枝三大煤電集團煤礦山採煤沉降區面積統計

(1)重慶市南桐東林煤礦矸石山滑坡

1)基本概況。南桐礦業有限責任公司東林煤礦位於重慶市萬盛區萬東鎮新華村胡家溝社區,中心地理坐標;東經106°54′,北緯28°58′,高程約310m,為市屬國有煤礦。該礦建於1958年,1964年4月正式投產,現已成為西南地區最大的主焦煤礦山之一,其產品主要供應重慶鋼鐵集團公司。

礦山主要開采魚東井田主幹構造龍骨溪復式背斜北西翼的次級褶皺——甘家坪向斜軸至貓岩背斜之間的二疊系龍潭煤組(P2)的K1(6#)、K2(5#)、K3(4#)煤層,+340~-100m標高范圍內探明儲量1782.2×104t,累計開采儲量1427.5×104t,現保有儲量354.7×104t。-100~-600m標高范圍內尚有保有探明儲量2818×104t。礦井開拓方式為豎井+暗斜井,中央對角式通風,礦井設計生產能力為45×104t/a,2004年核定生產能力為30×104t/a。煤礦現有職工2363人,居民7124人(任幼蓉等,2006)。

礦井現開采水平在-36m標高處,采空區面積達1.86km2,矸石堆積於主井西南側500m的東林矸石山,中心地理坐標:X=3202950,Y=36395920,矸石通過運輸大巷、提升斜坡提運到矸石山。該矸石山堆積43年,佔地面積近7×104m2,堆積高程400~330m,堆積最大高差達22m(照片3-1),堆積矸石總量為100×104t。

2)危害性。2004年6月5日下午13時55分左右,東林煤礦矸石山發生滑坡,形成矸石流,見照片3-2和照片3-3,摧毀房屋14棟,造成15人死亡,3人受傷,6人失蹤;2005年10月25日上午7時40分左右,東林煤礦矸石山再次發生垮塌,一名上學路過的小學女生被埋身亡。隨著矸石的進一步堆放,矸石山可能再次滑坡或形成矸石流,再次威脅到附近17戶58人的安全,且影響胡家溝至甘家坪公路的正常使用,地表水流經矸石山後形成污水,對下游農田、溪流造成嚴重污染。

照片3-1 重慶南桐東林煤礦矸石山

照片3-2 重慶南桐東林矸石山滑坡現場

照片3-3 重慶南桐東林矸石山滑坡泥土將山下的魚塘填埋

3)成因分析。①自然因素。東林矸石山兩次滑坡均是在連續降雨後產生的,因此降雨是滑坡形成的主要誘發因素。②人為因素。矸石堆放不合理,超過原設計堆放量,而且存在安全隱患後未得到及時治理。

(2)四川省敘永震東鄉太平村煤礦滑坡地質災害

四川省瀘州市敘永縣震東鄉太平村有多個鄉鎮小煤礦在進行井下開采。因采空區頂板斜坡變形,於1999年7月16日下午4時發生滑坡(圖3-4),滑坡體積53×104m3,4人死亡、3人受傷,7戶村民房屋完全掩埋,6戶遭破壞(李永貴等,2006)。該滑坡發生前地面有一定變形特徵,該市地質環境監測站調查中發現了危險,向該村村民進行了宣傳和抗災動員,並加強了監測。因此,滑坡發生前大多數人都採取了避讓的辦法,減少了傷亡損失。

圖3-4 四川敘永縣震東鄉太村礦山7.16滑坡剖面圖

(據李永貴,2006)

1—泥岩;2—黃鐵礦泥岩;3—砂質泥岩;4—泥質粉砂岩;5—粉砂岩;6—石灰岩;7—鮞狀灰岩;8—生物灰岩;9—滑坡堆積物;10—下三疊統飛仙關組二段;11—下三疊統飛仙關組一段;12—上二疊統長興組;13—上二疊統樂平組;14—下二疊統茅口組;15—上煤層代號;16—下煤層代號;17—原地面線;18—滑坡滑動後地面線;19—滑坡滑動推測線

3.能源礦山泥石流地質災害

能源礦山泥石流的形成常與煤矸石的大量堆放有關,加之地形地貌條件和暴雨,形成泥石流地質災害。重慶、四川、貴州時有發生。成都市天宮廟煤礦區泥石流災害較突出:

(1)泥石流危害

1998年9月17日凌晨3時左右,由於普降暴雨,位於大邑縣以西20km的天宮廟鎮煤礦區陽溝、肖溝、小龍溪、栗子坪等礦段暴發了泥石流,導致公路、橋梁被毀,交通、供電中斷,十多間房屋沖毀,礦區大量機電設備等物資失蹤,礦井被淹停產等,僅邖江煤礦直接經濟損失就達100萬元以上;另外,泥石流導致附近居住的農民3人失蹤,1人死亡,十多間房屋不同程度毀壞,大量牲畜失蹤等,各溪溝泥石流損失的情況詳見表3-18。

(2)形成條件

泥石流的形成除與暴雨有關外,還與該地的地形、地貌及固體物源密切相關。

1)地形地貌條件。陽溝位於天宮廟鎮西,為常年流水溝谷,陽天礦段河谷寬20m,至溝源方向,河谷漸窄至數米,溝源高程1580m、溝口高程760m,陽溝總長約6km,河床縱坡降136.7%;在中崗(陽溝礦)附近發育一支溝,溝長1.35km,溝床縱坡降214.8%,造成人員傷亡主要在該溝谷段。中崗段溝床縱坡降6.77%。中崗至溝源段為該泥石流形成區,中崗—近河口公路橋段為流通區,溝谷突然變寬,流水變緩,泥石流攜帶巨石在此處沉積,形成堆積區,礫石具一定程度的定向排列,堆積物以灰色岩屑砂岩、角礫岩為主,粒徑一般大於30cm,大者可達1.2m,堆積物寬30餘m,長約150m,厚4~5m,似長條形。河谷兩側谷坡植被良好,坡度35°~50°。陽溝有國營邖江煤礦陽大、陽溝礦及地方聯礦,另有眾多小煤窯分布此地。

表3-18 成都市天宮廟煤礦泥石流造成的災害情況

肖溝位於天宮廟鎮西北約3km處,溝長約1.5km,溝口高程870m,溝源至溝口總落差430m,溝床縱坡降28.67%,七星礦位於肖溝,溝口附近分布許多建築物,公路從溝口通過,其下修有一寬3.8m、高4.0m的涵洞,為常年流水溝,附近谷坡植被良好,坡度35°~40°。

小龍溪位於天宮廟鎮西北約1.5km處,溝總長約3km,溝口高程790m,溝源至溝口總落差430m,溝床縱坡降14.33%,溝谷狹窄,河口附近變寬。山坡植被好,坡度40°~50°。

栗子坪礦泥石流溝為一沖溝,主溝長100餘m,溝深1.5m左右,溝寬1.0m左右,溝源處有2條岔溝,時有流水,溝床坡度12°,溝源、溝側堆積大量小煤窯煤矸石。溝口、溝側建築物密布,溝水從溝口公路涵洞通過。

2)固體物源。泥石流所處地層主要是三疊系須家河組,由灰色岩屑砂岩及砂質泥頁岩互層,夾煤層。岩層軟硬相間,位於背斜核部,伴生斷裂發育,盡管溝穀穀坡植被良好,但谷坡表層崩、坡積物分布普遍,導致溝口泥石流堆積物有岩屑砂岩顯現;另外近十多年來,地方鄉鎮企業迅猛發展,天宮廟煤礦區除分布有地方煤礦外,尚有許多小煤窯亂采濫挖,煤矸石隨意堆放,為泥石流的發生提供了重要物源。栗子坪礦泥石流固體物質絕大部分為煤矸石,陽溝左岸谷坡有2處沖溝形成的小型泥石流,其物源主要也為煤矸石。在該溝中部,地方聯礦對面721煤礦,煤矸石堆積方量在2500m3左右,因岸坡腳被淘蝕,煤矸石堆積及坡積物順坡下滑形成泥石流。

綜上所述,泥石流的形成與自然因素有關,也與人為因素(采礦廢渣亂堆放)密切相關。

4.能源礦山崩塌地質災害

西南地區能源礦山崩塌地質災害突發性強,不易防範,危害性大。一般在不利的地質環境采礦易造成崩塌地質災害。主要分布在重慶西部、四川南部、貴州西部地區。

(1)貴州西部煤礦山崩塌地質災害

貴州西部產煤區,地形切割強烈,相對高差一般300~500m,河谷沿岸切割可達700~1000m,特別是有些峽谷地段,岩壁陡立,使崩塌的形成具備了有利條件。而這種陡峻的山坡一般是坡體中、上部為硬質岩層,中、下部為軟質岩層,煤一般產於下部的軟質岩中,采礦進一步破壞了山體的穩定性,上覆岩體失去支撐,沿自身垂直方向產生卸荷掉塊形成崩塌。

1)貴州納雍縣鬃嶺鎮左家營村崩塌。2004年12月3日發生的特大型崩塌地質災害,38人死亡,失蹤6人,13人受傷。崩塌點位於岩腳組後山陡崖上,坐標為東經105°14′09″,北緯26°42′50″,高程2120m。崩塌發生後,調查發現崩塌點一帶陡崖上仍有3處明顯危岩體,總規模3萬余m3,可能產生再次崩塌。坡腳堆積體在強降雨或陡崖上方再次發生崩塌等沖擊因素作用下,易發生滑坡泥石流災害,將直接威脅其下部岩腳組54戶280人、新房子組部分村民59戶200人及孫曉煤礦、左家營煤礦人員的生命財產安全。

2)2001年7月17日21時20分左右,貴州習水縣仙源鎮福硐村萬金二礦發生山體崩塌,崩塌體約5000m3,造成2人死亡,8人失蹤,2人受傷,毀房2棟。該崩塌的形成是在岩體處於不穩定的自然狀態下,由於採煤活動誘發。崩塌體位於河谷沖刷形成的陡岸地段,高40餘m,下部為泥頁岩構成的軟弱基座(產煤),其上岩石節理裂隙發育,岩石被分割成塊體狀,地下水沿裂隙的活動,加強了溶蝕風化,採煤放炮活動及運煤重車的震動,導致岩體失穩崩塌。

3)2001年5月29日15時20分,貴州興義市雄武鄉木咱村3組和4組發生岩體崩塌。崩塌堆積體達90×104m3,淹埋6戶7棟居民樓、2輛東風汽車,近13.33hm2農田被毀,10人死亡,2人重傷,3人輕傷。崩塌段陡崖高200餘m,反向坡下台地1720~1780m高程內分布眾多煤井,開采時間長,開采深度延伸1000餘m,采空區較大,頂板已發生崩塌,採煤放炮破壞了岩體強度和完整性,導致陡崖軟質基座不穩定,在重力及暴雨共同作用下陡崖發生崩塌。

(2)重慶市雞冠嶺煤礦山崩塌地質災害

1)基本概況。雞冠嶺崩塌位於武隆縣興順鄉,烏江左岸陡斜坡地帶。該區地貌屬構造剝蝕低山地貌,地形為下陡上緩的折線形斜坡,下部斜坡坡角57°,上部為40°~85°。烏江橫切構造及地層,形成深切「V」字形峽谷,相對高差約300m。該區出露地層為古生界二疊系,下部為龍潭組(P2l)深灰色頁岩、顆粒砂岩、鈣質頁岩、灰色頁岩夾薄煤層。上部為長興組(P2c)深灰色、灰白色、青灰色灰岩,含燧石結核,局部含硅質層。岩層產狀316°∠72°。該區構造強烈,地層褶曲很多。基岩裸露,植被較少,第四系殘坡積層厚度小,分布零星。原鄉鎮企業興隆煤礦位於斜坡中段。

雞冠嶺崩塌發生於1994年4月30日,體積約400×104m3,見照片3-4,大量崩石堆於斜坡上,少量入烏江形成亂石壩,造成了近10m高的水位落差,激浪高1~5m。7月4日暴雨後斜坡上的堆石又大部發生塌滑,部分入江形成第2道亂石壩(任幼蓉等,2006)。

2)成因分析。該崩塌主要是由於原鄉鎮企業興隆煤礦在地質條件復雜的雞冠嶺背斜上盲目採煤引起的,降雨也是誘發因素之一。

5.能源礦山礦坑突水地質災害

照片3-4 重慶雞冠嶺崩塌全貌

西南地區礦坑突水121次,主要發生在能源礦山。由於礦體位於地下水位以下,在掘進或開采過程中掘穿隔水頂底板,或打通原采礦積水老硐,或位於河流附近,受斷層帶影響及支護不力導致頂板隔水層變形、冒落而引起河流漏水等原因造成。礦坑突水的主要危害是淹井,影響礦區生產、威脅井下人員安全,有些場合還會造成地表河流斷流。區內能源礦山礦坑突水地質災害比較突出。

(1)重慶市煤礦山礦坑突水地質災害

2003年9月10日8時30分,重慶市秀山土家族苗族自治縣涌洞鄉川河煤礦四門二井+960m水平下山南大巷掘進工作面320m處,發生一起特大礦坑突水事故,18人死亡,直接經濟損失85.6萬元。

2004年6月13日,南桐礦務局南桐礦發生穿水事故,井下進水近500×104m3,南桐礦、魚田堡礦、東林礦相繼被淹,死亡3人,直接損失近2億元,2萬職工拿基本生活費,4萬家屬拿社會救濟金,設計生產能力60×104t/a的魚田堡礦至2006年2月還被淹沒,無法恢復生產。

(2)貴州能源礦山礦坑突水地質災害

2004年9月到2005年1月,在4個多月時間里,貴州省連續發生3次大的礦坑突水事故:2004年9月5日,赫章縣媽姑鎮六合煤礦發生礦山突水事故,死亡10人;2004年12月12日,思南縣許家壩鎮天池煤礦發生特大礦山突水事故,死亡36人;2005年1月16日,德江縣聯興煤礦發生礦山突水事故,死亡7人。這些礦山地質災害都與不合理開采有關。

(二)能源礦山環境污染

西南地區能源礦山的污染主要表現在水污染和空氣污染。

1.能源礦山水污染

水污染以煤礦水和矸子山的淋濾水污染尤為突出。廢水中的污染物主要有懸浮物、石油類、硫化物、氧化物、揮發分、六價鉻、砷、鉛、汞、鎘等。較嚴重的礦山有重慶南桐煤礦、攀枝花煤礦、川南芙蓉煤礦等。

(1)重慶煤礦水污染問題

重慶市南桐礦務局電廠和南川南平煤礦焦化廠污染相當嚴重,該區12條河流有11條遭到污染,污染的河水在補給地下水時,又重復性污染地下水。據地下水監測資料,南桐片區岩溶水監測點的超標項目達8個之多。其中總硬度超標66.7%,總礦化度超標33.3%,總鐵超標100%,氟超標66.7%,錳超標100%,硫酸鹽超標66.7%,細菌總數超標100%,大腸菌群超標100%。

重慶市榮昌縣五星洗煤廠的洗煤廢水懸浮物濃度大,含大量岩粉、煤粉,尾礦未經處理直接排入瀨溪河一級支流,嚴重污染瀨溪河。致使高池村1000多人生活、生產用水受到污染,嚴重影響了當地村民的身體健康,肚大、肝癌等發病率遠高於其他地方。

(2)攀枝花煤業集團公司煤礦山水污染

攀枝花煤業集團公司包括大寶鼎、小寶鼎、太平及花山煤礦以及精煤廠(洗煤廠),形成分布於金沙江兩岸的採煤、洗煤一條龍聯合企業。礦山采出的煤通過纜車送到洗煤廠,洗煤廠洗好的煤通過火車運至攀鋼焦煤廠,廢渣又通過纜車輸運至南岸礦區的矸石堆。江邊有污水處理廠。該集團公司4個煤礦年產礦坑水2238.07×104m3,年處理量為2185.88×104m3,年循環使用量為1945.78×104m3,循環利用率達86.9%。該精煤廠(洗煤廠)是國家環保先進企業,循環水(閉路)達一級,廠內未見任何生產廢水排出。但采礦區仍見黑乎乎的廢水流入金沙江,經取樣分析水質為SO4·HCO3Mg·Ca型,除固體懸浮物質太多外,可溶性固體總量也達1077.5g/L,排放廢水嚴重超標,這些廢水與礦坑排水,特別是小型個體礦山排水密切相關。另外,摩梭河水在流經太平和花山礦區之後,其水中的NO2、總硬度、可溶性總固體、耗氧量、Mn等化學組分均由以前的未超標而變成超標,含量增加0.75倍至111倍。

(3)四川芙蓉煤礦區水污染

芙蓉煤礦區年產礦坑水約1500×104t,其中4家國有礦山年產礦坑水922.57×104t,小型民營礦山年產礦坑水577.43×104t。國營礦山年治理礦坑水554×104t,占年產礦坑水的60%。民營礦山年利用礦坑水約9.3×104t,占年產礦坑水的1.7%。

經四川地質環境監測總站實地調查及采水樣分析表明,國有礦山中芙蓉煤礦、白皎煤礦、杉木樹煤礦3家礦山雖有礦坑水循環利用處理系統,但因未全部處理,加之周邊有未經處理排放的眾多小型民營礦山,水中的硫酸根(SO2-4)含量仍超過了最大允許排放標准600mg/L;芙蓉礦務局紅衛煤礦因礦坑水為地下水,經部分處理後達到排放標准,可作為農灌利用。其餘小型民營礦山均為未處理排放,故大多數水質的硫酸根(SO2-4)均超過了最大允許排放標准600mg/L,水中的鈣離子(Ca2+)含量也超過了最大允許排放標准200mg/L,更有甚者如高縣芙蓉山和大灣煤礦所排礦坑水中不但硫酸根(SO2-4)、鈣離子(Ca2+)含量超過最大允許排放標准,而且水中鎂離子(Mg2+)含量也超過了最大允許排放標准,並形成酸性水,pH值在3.6~5.2之間,總硬度達223.1~393.1mg/L(以CaCO3計),對地表水造成嚴重污染(照片3-5)(李永貴等,2004)。

照片3-5 四川芙蓉煤礦不規范的矸石廢水排放現場

(4)貴州西部高硫煤礦山水污染

貴州西部織金縣高硫煤層礦山廣泛分布有含硫酸亞鐵和硫酸的水,當地群眾稱這種水叫「銹水」。流經織金縣城的織金河已被「銹水」污染,全縣水田中「銹水」田面積佔10.5%,占低產水田面積的42.7%。隨著民營煤礦的發展,銹水污染面積還在擴大,許多良田大幅度減產,甚至顆粒不收。當稻田酸度大,pH值小於4.5時,稻苗就出現病態,pH值小於3.5時稻苗就會死亡。織金縣鳳凰片區煤礦山排水酸度最低時pH值小於2.5,受其污染有長達數千米的河流pH值小於4.5(王慧,2004),引用此河水灌溉的農田深受危害。「銹水」中還含重金屬可進入食物鏈,危害人體健康。

2.能源礦山空氣污染

能源礦山的空氣污染亦相當突出,已造成氟中毒、砷中毒,傷害人體健康。

空氣污染較嚴重的地方主要在貴州西部,如盤江煤電集團老屋基礦、水礦集團汪家寨礦6座煤矸石山都產生過自燃,自燃時間長達10年之久,產生了大量的SO2,H2S,CO2和F等有毒有害氣體;六盤水市數以千計的煤炭煉焦廠,產生了大量有毒有害氣體,造成空氣嚴重污染。

貴州西南部煤層含砷和氟,礦山開采出來的煤經燃燒,砷和氟進入空氣,污染環境造成人體砷中毒和氟中毒,形勢相當嚴峻。據貴州疾控中心資料,貴州有1000萬氟斑牙患者,64萬氟骨病人;以縣為單位,氟中毒的人口1900萬,約占貴州人口的一半。據貴陽地化所調查,煤炭中的氟含量為598mg/kg,土壤中的氟含量為903mg/kg,用煤炭烤過的玉米、辣椒等農作物含氟量超過國家標准幾十倍甚至數百倍,氟污染相當嚴重。

空氣中砷可以通過皮膚、呼吸道、消化道進入人體。貴州織金縣交樂鄉小煤窯採的煤含砷量相當高,因敞爐方式取暖、烘乾糧食,造成人體中毒。自1976年以來,確診慢性砷中毒患者至少有3000例。

氟中毒和砷中毒不僅僅是個醫療問題,也是個經濟社會問題。2006年中央撥專款2400萬元和12萬元爐灶給貴州用於治療地方病。

2003年12月23日,重慶市開縣的一口天然氣礦井發生井噴,大量硫化氫氣體污染幾十平方千米,數十人死亡,直接經濟損失在億元以上。

(三)能源礦山對土地資源的占壓破壞

西南地區以能源礦山占壓和破壞土地面積最多,為121706.49hm2,占各類礦山總占壓面積的61.2%。其中又以四川能源礦山占壓土地面積最大,為68251.00hm2,佔西南地區能源礦山總占壓面積的56.1%。其次是貴州占壓面積28606hm2,雲南15908.66hm2,重慶7697.7hm2,西藏1245.13hm2

西南地區能源礦山主要分布於四川盆地及盆周山地、黔西、渝西、滇東北地區,主要為煤礦山,以井下開采為主,采場佔地面積相對較小,但固體廢棄物及地面塌陷區佔地面積較大。

四川攀枝花寶鼎煤礦,包括大寶鼎、小寶鼎、太平及花山4個國有大、中型煤礦山和數十個民營礦山,佔地面積達80km2

貴州省煤炭資源豐富,從20世紀60年代起就大規模開采,到現在排放的煤矸石已堆積如山,目前僅六盤水市境內的六枝特區、鍾山區、水城縣、盤縣特區堆成的大型煤矸石山就有30餘座,堆放高度達80餘m,最高的達200餘m,現在煤矸石堆積量已達9500×104t,佔地面積233.31餘hm2,如盤江煤電集團所屬的大型煤矸石山就有7座,佔地面積66.66餘hm2,水礦集團所屬大型煤矸石山9座,佔地面積已達171.72hm2,根據生產礦井排矸量為煤的20%,洗煤排矸量為原煤的25%,按這一排矸系數計算,加上隨著生產能力的提高,可以預測區內的煤矸石佔地面積將不斷增加。因煤矸石結構鬆散,穩定性差,遇持續強降雨時,還易產生滑坡、泥石流地質災害。

重慶市中梁山煤礦從1959年投產至今已47年,佔地面積達10×104m2。其中位於礦區南部華岩鎮石堰村三社的煤矸石山,佔地面積為4.6×104m2;位於礦區北部華岩鎮共和村六社的煤矸石山,佔地面積約5.4×104m2(照片3-6),影響了農業經濟的發展。

照片3-6 重慶中梁山煤電有限公司北煤矸石山

閱讀全文

與礦山廢水鐵超標相關的資料

熱點內容
逍客空調濾芯在哪裡呢 瀏覽:133
75升純凈水桶怎麼能買到 瀏覽:860
臨工挖掘機柴油濾芯怎麼換 瀏覽:186
水處理中反滲透處理工藝流程圖 瀏覽:724
蒸汽洗車多久除垢一次 瀏覽:454
廚房有污水管道怎麼辦 瀏覽:629
高碑店回曲陽用隔離嗎 瀏覽:845
武漢市污水處理設備機械公司 瀏覽:554
自動上水器怎麼換濾芯 瀏覽:803
edi在外貿中的主要應用寶 瀏覽:913
養豬業廢水處理模式 瀏覽:232
s600機油濾芯在什麼地方 瀏覽:175
鳳尾魚魚缸放凈水劑魚趴缸為什麼 瀏覽:589
西門子凈水器什麼時候換濾芯 瀏覽:57
EDI低 瀏覽:219
凈水器三分管是什麼意思 瀏覽:969
不飽和樹脂和玻纖融合度不好 瀏覽:592
樹脂砂型生產設備 瀏覽:417
凈水器放茶杯的叫什麼 瀏覽:77
車子更換汽油濾芯需要多少錢 瀏覽:239