導航:首頁 > 污水知識 > 脫硫廢水煙道霧化蒸發技術

脫硫廢水煙道霧化蒸發技術

發布時間:2024-12-21 10:10:01

『壹』 脫硫廢水水中氯離子怎麼去除

如果不上蒸發器,主要有兩個思路,一個是將廢水中和後噴霧到空預器和電除塵之間煙回道,在美國有先例,空預器答出口煙氣大約為140~150度,噴灑後降低大約6度,鹽類就在灰分里由電除塵排出.但是目前國內大容量鍋爐空預器出口煙氣溫度大約為120~128度,如果噴水後煙氣濕度增大,溫度降低,對電除塵的低溫腐蝕及除塵效果有一定影響.況且在50%BMCR工況下煙氣溫度將更低,低溫腐蝕更明顯.
另一個思路是將煙氣噴灑煤場,但對於封閉式煤場來說,一般是在發現煤自燃情況下才噴水的,所以不是連續利用,而且量也不會很大.還要考慮到在目前的市場狀況,哪個電廠有本事存很多煤?每小時15噸水是很厲害的,所以這一條也不現實.
總之脫硫廢水裡的氯根和硫酸根是很難處理的,要做到完全零排放真的很困難.
氯離子的來源老夫在10樓說的不是很准確,應該來說氯根的來源有三個主要地方1煤,我國主要是低氯煤,煤的含氯量小於01%.2工藝水,只要是江水,肯定有一定的氯根.3石灰石,石灰石中的氯根要根據產地不同有所區別

『貳』 脫硫廢水水中氯離子怎麼去除

如果不上蒸發器,主要有兩個思路,一個是將廢水中和後噴霧到空預器和電除塵之內間煙道,在美國有先例,容空預器出口煙氣大約為140~150度,噴灑後降低大約6度,鹽類就在灰分里由電除塵排出。但是目前國內大容量鍋爐空預器出口煙氣溫度大約為120~128度,如果噴水後煙氣濕度增大,溫度降低,對電除塵的低溫腐蝕及除塵效果有一定影響。況且在50%BMCR工況下煙氣溫度將更低,低溫腐蝕更明顯。

另一個思路是將煙氣噴灑煤場,但對於封閉式煤場來說,一般是在發現煤自燃情況下才噴水的,所以不是連續利用,而且量也不會很大。還要考慮到在目前的市場狀況,哪個電廠有本事存很多煤?每小時15噸水是很厲害的,所以這一條也不現實。

總之脫硫廢水裡的氯根和硫酸根是很難處理的,要做到完全零排放真的很困難。

氯離子的來源老夫在10樓說的不是很准確,應該來說氯根的來源有三個主要地方1煤,我國主要是低氯煤,煤的含氯量小於01%。2工藝水,只要是江水,肯定有一定的氯根。3石灰石,石灰石中的氯根要根據產地不同有所區別。

『叄』 煙氣脫硫方法的常見的脫硫技術

更多了解····萊特.萊德····煙氣脫硫(FGD)是工業行業大規模應用的、有效的脫硫方法。按照硫化物吸收劑及副產品的形態,脫硫技術可分為干法、半干法和濕法三種。干法脫硫工藝主要是利用固體吸收劑去除煙氣中的SO2,一般把石灰石細粉噴入爐膛中,使其受熱分解成CaO,吸收煙氣中的SO2,生成CaSO3,與飛灰一起在除塵器收集或經煙囪排出。濕法煙氣脫硫是採用液體吸收劑在離子條件下的氣液反應,進而去除煙氣中的SO2,系統所用設備簡單,
運行穩定可靠,脫硫效率高。干法脫硫的最大優點是治理中無廢水、廢酸的排出,減少了二次污染;缺點是脫硫效率低,設備龐大。濕法脫硫採用液體吸收劑洗滌煙氣以除去SO2,所用設備比較簡單,操作容易,脫硫效率高;但脫硫後煙氣溫度較低,設備的腐蝕較干法嚴重。

石灰石(石灰)-石膏濕法煙氣脫硫工藝石灰石(石灰)濕法脫硫技術由於吸收劑價廉易得,在濕法FGD領域得到廣泛的應用。

以石灰石為吸收劑反應機理為:

吸收:SO2(g)→ SO2(L)+H2O → H++HSO3- → H+ +SO32-

溶解:CaCO3(s)+H+ → Ca2++HCO3-

中和:HCO3- +H+ →CO2(g)+H2O

氧化:HSO3-+1/2O2→SO32-+H+

SO32- +1/2O2→SO42-

結晶:Ca2++SO32- +1/2H2O →CaSO3·1/2H2O(s)

該工藝的特點是脫硫效率高(>95%)、吸收劑利用率高(>90%)、能適應高濃度SO2煙氣條件、鈣硫比低(一般<1.05)
、脫硫石膏可以綜合利用等。缺點是基建投資費用高、水消耗大、脫硫廢水具有腐蝕性等。

海水煙氣脫硫海水煙氣脫硫工藝是利用海水的鹼度達到脫除煙氣中二氧化硫的一種脫硫方法。脫硫過程不需要添加任何化學葯劑,也不產生固體廢棄物,脫硫效率>92%,運行及維護費用較低。煙氣經除塵器除塵後,由增壓風機送入氣-氣換熱器降溫,然後送入吸收塔。在脫硫吸收塔內,與來自循環冷卻系統的大量海水接觸,煙氣中的二氧化硫被吸收反應脫除,海水經氧化後排放。脫除二氧化硫後的煙氣經換熱器升溫,由煙道排放。

海水煙氣脫硫工藝受地域限制,僅適用於有豐富海水資源的工程,特別適用於海水作循環冷卻水的火電廠,但需要妥善解決吸收塔內部、吸收塔排水管溝及其後部煙道、煙囪、曝氣池和曝氣裝置的防腐問題。其工藝流程見圖1。

噴霧乾燥工藝噴霧乾燥工藝(SDA)是一種半干法煙氣脫硫技術,其市場佔有率僅次於濕法。該法是將吸收劑漿液Ca(OH)2在反應塔內噴霧,霧滴在吸收煙氣中SO2的同時被熱煙氣蒸發,生成固體並由除塵器捕集。當鈣硫比為1.3~1.6時,脫硫效率可達80%~90%。半干法FGD技術兼干法與濕法的一般特點。其主要缺點是利用消石灰乳作為吸收劑,系統易結垢和堵塞,而且需要專門設備進行吸收劑的制備,因而投資費用偏大;脫硫效率和吸收劑利用率也不如石灰石/石膏法高。

噴霧乾燥技術在燃用低硫和中硫煤的中小容量機組上應用較多。國內於1990年1月在白馬電廠建成了一套中型試驗裝置。後來許多機組也採用此脫硫工藝,技術已基本成熟。

電子束煙氣脫硫工藝(EBA法)電子束輻射技術脫硫工藝是一種干法脫硫技術,是一種物理方法和化學方法相結合的高新技術。該工藝的流程是由排煙預除塵、煙氣冷卻、氨的沖入、電子束照射和副產品捕集工序組成。鍋爐所排出的煙氣,經過集塵器的粗濾處理之後進入冷卻塔,在冷卻塔內噴射冷卻水,將煙氣冷卻到適合於脫硫、脫硝處理的溫度(約70℃)。煙氣的露點通常約為50℃。通過冷卻塔後的煙氣流進反應器,注入接近化學計量比的氨氣、壓縮空氣和軟水混合噴入,加入氨的量取決於SOx和NOx濃度,經過電子束照射後,SOx和NOx在自由基的作用下生成中間物硫酸和硝酸。然後硫酸和硝酸與共存的氨進行中和反應,生成粉狀顆粒硫酸銨和硝酸銨的混合體。脫硫率可達90%以上,脫硝率可達80%以上。此外,還可採用鈉基、鎂基和氨作吸收劑,一般反應所生成的硫酸銨和硝酸銨混合微粒被副成品集塵器分離和捕集,經過凈化的煙氣升壓後向大氣排放。

『肆』 電廠脫硫廢水真的能實現零排放嗎

脫硫廢抄水零排放處理技術主要包括襲兩種:
第一種是蒸發結晶法,該方法可以回收水資源和結晶鹽,能耗過高是限制其大規模應用的主要原因。此外,為了確保蒸發結晶器正常運行和保證結晶鹽品質,需要對脫硫廢水進行嚴格的預處理,如去除廢水中的硬度、有機物和重金屬等。因此,要實現蒸發結晶法的大規模應用,必須注重強開發廢水減量化預處理技術的研發,以期降低蒸發工段的建設和和運行成本,同時還要研究高效的脫硫廢水預處理技術。
第二種是煙道蒸發處理法,該工藝操作簡單,運行成本低,但是煙道處理法不能回收水資源,而且尚有大量潛在影響不能確定,包括對後續除塵等工藝的影響,以及可能引起的煙道腐蝕問題等。因此,在煙道蒸發處理脫硫廢水方面,應注重廢水進入煙道後對煙氣排放和煙氣處理系統的影響研究。煙道處理法要得到廣泛應用,還要進行大量、長期、全面的經濟技術研究和評價。

『伍』 有做脫硫廢水處理的嗎

脫硫廢水處理技術主要包括兩種:
第一種是蒸發結晶法,該方法可以回收水資版源和結晶鹽權,能耗過高是限制其大規模應用的主要原因。此外,為了確保蒸發結晶器正常運行和保證結晶鹽品質,需要對脫硫廢水進行嚴格的預處理,如去除廢水中的硬度、有機物和重金屬等。因此,要實現蒸發結晶法的大規模應用,必須注重強開發廢水減量化預處理技術的研發,以期降低蒸發工段的建設和和運行成本,同時還要研究高效的脫硫廢水預處理技術。
第二種是煙道蒸發處理法,該工藝操作簡單,運行成本低,但是煙道處理法不能回收水資源,而且尚有大量潛在影響不能確定,包括對後續除塵等工藝的影響,以及可能引起的煙道腐蝕問題等。因此,在煙道蒸發處理脫硫廢水方面,應注重廢水進入煙道後對煙氣排放和煙氣處理系統的影響研究。煙道處理法要得到廣泛應用,還要進行大量、長期、全面的經濟技術研究和評價。

『陸』 燃煤電廠脫硫廢水排放指標限值的計算方法研究

目前我國燃煤電廠脫硫廢水標准DL/T997—2006的排放指標與限制內容已不符合社會發展需要,為此,本文提出了燃煤電廠脫硫廢水排放指標限值相關計算方法。
論文調研了美國和國內的相關規范,對排放指標確定范圍的具體數值和演算法模型展開深入研究,結合我國行業發展狀況和國情給出了具體的修訂建議,通過計算模型得出脫硫廢水污染物控制參數的直接排放限值,氯化物日最大排放限值≤500mg/L,總溶解固體(TDS)日最大排放限值≤215mg/L,硒≤1.5mg/L,汞≤0.005mg/L等。
2015年國務院印發《水污染防治行動計劃》(以下簡稱「水十條」)明確了我國水環境治理的重點,為中國水污染防治指明了方向。
燃煤電廠濕式石灰石石膏法煙氣脫硫(FGD)產生的脫硫廢水以其污染物組分復雜、不少重金屬含量超標,直接排放將對環境及人體產生多重且長期的危害,因此電力行業2006年首次制定了《火電廠石灰石石膏濕法脫硫廢水水質控制指標》DL/T997,通過濃度控制對相應的污染物排放指標、處理技術提出了無害化要求。
脫硫廢水常規處理方法為化學沉澱、絮凝、中和、沉澱等技術路線,但隨著近年來零排放技術等的逐步出現與成熟,加之現有執行標準的控制指標種類少、不區分技術制定標准限值等問題,原有標准在技術先進性、環境要求方面的適應性越來越低。
為進一步完善國家環境污染物排放標准體系,規范和加強火電行業廢水排放管控,引導電力污染物環保產業可持續健康發展,對脫硫廢水標准進行修標已是大勢所趨尺宏。
本文通過對比我國與美國污染物排放標準的修訂及污染物排放指標濃度限值的計算模型,制定出適用於我國脫硫廢水污染物控制參數的直接排放限值計算方法。
1中美污染物排放標准修訂對比
1.1美國確定基於技術的污染物排放指標的流程
美國確陵鬧冊定水質污染物排放限值的方法基本分為以下3種:①特定化學物質法;②廢水綜合毒性法;③生物基準或生物學評估法。
經研究,美國工業點源水污染物排放限值的確定方法主要為水環境質量的綜合毒性法,該法採用水生生物暴露試驗的方法確定污染物綜合毒性,適用於難確定廢水水質復雜且難提出特定污染物的情況。
這區別於為滿足特定化學物質水質基準的特定化學物質法。根據美國國家污染物排放削減計劃(NPDES),其核心內容即排污許可證的頒發與實施,而該政策的實施內容則為點源水污染物排污許可限值。
美國對於點源污染物排放限值的確定方法依據之一為技術基礎(technology-based),即考慮目前能達到的技術處理能力;之二為水質基礎(water quality-based),即充分考慮以環境生物影響與人體健康為本的水質標准。
圖1給出了美國EPA基於處理技術確定廢水污染物排放指標限值的客觀研究流程。
圖1 美國環保署(EPA)水污染物排放標准限值確定流程
1.2國內常規污染物排放標準的修訂程序
我國的工業污染物排放控制標准通常以對應的污染物去除工藝、技術路線為主要修標依據,以人體健康(即環境效益)為基本要求,標准所控制的技術路線除技術可行外還要充分考慮經濟指標,即投資、運行費用等。
根據以上現有客觀修訂依據,本文作者通過綜合分析各類標準的修訂背景、必要性、計算研究方法等步驟,所確定的標准確定過程分解如圖2。
圖2 脫硫廢水污染物控制標準的修標流程
1.3我國污染物排放指標存在的問題
1.3.1相關指標在標准中體現不夠
我國對於脫硫廢水的控制標准有行業標准《火電廠石灰石-石膏濕法脫硫廢水水質控制指標》(DL/T997—2006),其中指標有對重金屬的控制如總汞、總鉻、總鎘、總鉛、總鎳、懸浮物、化學耗氧量、硫化物、氟化物、硫酸鹽、pH進行了制約。
考慮到目前國內推薦應用的脫硫廢水處理技術路線,如沉澱、混凝、彎汪中和等化學處理後達標排放,即三聯箱技術。此路線對懸浮物與大部分金屬及重
金屬汞、砷去除率很高,但對氯化物、溴化物、硼、硫酸鹽、銨和其他溶解固體(TDS)去除率低[13];並且對某些有害元素如硒等去除效果差。
對於此種處理技術,現有的控制標准種類少,對可溶性鹽及硒等有害物質的排放在標准中體現不夠。
其次我國推薦的脫硫廢水處理技術路線還有化學沉澱、混凝、中和預處理+膜濃縮+煙道余熱蒸發乾燥/蒸發結晶,即脫硫廢水零排放技術。
此技術需要對汞、砷、硒和硝酸鹽/亞硝酸鹽的出水濃度進行限值,以及對總懸浮固體(TSS)進行限制。
我國脫硫廢水控制標准不再符合社會發展需要,需增加現有執行標準的控制指標,更應該關注溶解性總固體TDS、硝酸鹽/亞硝酸鹽,汞、六價鉻、銅、硒等有害物質控制指標。
1.3.2未充分考慮技術經濟可行性
深入研究美國環保署2015年最新修訂的關於點源燃煤電站的污染物排放標准40 CFR Part423,《Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category》;Final Rule,關於FGD廢水的控制標准有兩套BAT(best available technology economically achievable,最佳經濟可行技術)限制,第一套BAT控制標準是對TSS(total suspended solid,總懸浮固體)制定的數值限制標准,該控制方法與EPA先前制定的關於TSS的BPT(best practicable control technology currently available,最佳現有實用控制技術)規范在數值上相同;第二套BAT控制標準是對汞、砷、硒、硝酸鹽/亞硝酸鹽氮制定的數值限制標准,而自願採用先進技術的現存燃煤電廠(ES,existing sources)與新建電廠(NS,new sources)的FGD廢水控制指標為汞、砷、硒、TDS(溶解性總固體)。
但我國還未建立系統的污染物削減技術評估體系,目前我國制訂的BAT僅11個,不足以支撐所有行業的水污染物排放標准制修訂工作。
1.3.3標准在技術先進性、環境要求方面的適應性需提高
在制定標准時應與現今脫硫廢水處理技術及環境要求無縫銜接。行業水污染物排放限值是通過綜合考慮工業排污水平、污染物處理技術、環境質量要求、國內外相關標准等多方面的因素來制訂。
如今零排放技術已在我國部分應用,《火電廠石灰石-石膏濕法脫硫廢水水質控制指標》已遠遠不適用於當今污染控制技術。
美國對於濕法脫硫廢水的排放控制標准,美國EPA根據不同的處理技術分別制定了不同的控制限值。
如只採用化學沉澱法處理脫硫廢水的電廠需要針對汞、砷提出控制標准;採用化學沉澱後續串聯生物處理脫硫廢水的電廠需要提出汞、砷、硒、硝酸鹽/亞硝酸鹽態氮的控制標准;而採用蒸發處理脫硫廢水的電廠則提出控制汞、砷、硒和總溶解性固體的要求。
2相關計算模型
2.1發達國家確定污染物排放指標濃度限值的計算模型
參考美國國家污染物削減計劃(NPDES)中基於BAT技術的水污染物濃度限值計算方法建立計算模型過程。
(1)確定需要控制的污染物指標,根據造成的環境影響即主要矛盾,包括長期/慢性和短期/急性毒性確定。
(2)工業廢水濃度限值分為日最大濃度限值(短期)與30天平均值(長期),分直接排放到自然水體的濃度限值和排放到下游公共污水處理設備的濃度限值,不同濃度的演算法公式也不同。
以工廠排放的某污染物i為例,討論長期平均值(long time average,LTA),如式(1)。
(3)日變異系數和月變異系數VF的確定。
(4)根據計算模型標准濃度限值=LTA×VF,最終確定排污行業不同污染物濃度的濃度限值標准。
(5)可行性驗證。
2.2適用於我國工業廢水排放的標准限值計算模型
(1)某種污染物濃度限值確定行業長期平均值採用算術平均根的計算模型,以企業排放的COD為例,公式如式(2)。
3我國脫硫廢水排放標準的濃度限值計算方法
依據新修訂脫硫廢水排放標準的標准限值依託的技術依據擬採用零排放技術「化學預處理+RO膜濃縮減量+蒸發結晶」技術為主、「化學預處理+RO膜濃縮減量+余熱煙氣旁路蒸發」技術為輔。
已知正常工況下兩種技術的出水指標相當,形成的脫硫廢水零排放系統的主要污染物進出口控制參數如表1,以國內某燃煤電廠大型脫硫廢水零排放工程實例為參考原型。
表1 脫硫廢水零排放系統的主要污染物進出口控制參數
根據燃煤電廠石灰石石膏濕法脫硫廢水的水質特點、主要污染物種類可能造成環境危害以及現有水質標準的主要控制對象的分析,以及環保部推薦的最佳處理技術的結論,確定了脫硫廢水中需要控制的污染物種類,如表2。
表2 基於蒸發結晶/旁路蒸發技術(BAT)的脫硫廢水污染物控制參數確定
下面以10家採用脫硫廢水零排放技術的燃煤電廠出水水質數據為基礎,以具有代表性的污染物硫酸根離子SO42–為例代入數學模型計算,過程和結果如下。
(1)計算長期平均值LTA,如式(8)。
國家規定的化學需氧量的測定方法為重鉻酸鹽法,由GB11914—1989可知,該方法檢出限為0.2mg/L;未檢出比例為p=0。
表1中的其他類型污染物的BAT濃度限值的計算結果同硫酸根,因此最終計算結果如表2。
4結論與展望
(1)以最佳可利用技術(BAT)——脫硫廢水零排放技術蒸發結晶的工藝路線為標准濃度限值確定的技術依據,充分學習我國與美國環保部門制定廢水排放標准限值時藉助的數學模型演算法,確定了該技術方案支持下的脫硫廢水排放控制標準的污染物種類與控制濃度區間。
(2)在深入研究了我國和美國的標准限值確定方法的基礎上,融合了兩國計算模型的共同點,得出了根據脫硫廢水水質水量特點確定的需要污染物種類,包括新增的TDS日最大排放限值、硝酸鹽日最大排放限值、氯化物等無機鹽離子的控制水平、二類污染物銅、硒的控制水平以及一類污染物汞、六價鉻等重金屬控制指標等。
(3)脫硫廢水新的控制指標應更加適應當前及未來的環境發展需要。
希望以上的內容可以幫助到你,更多信息,歡迎登陸中達咨詢進行咨詢。

更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

『柒』 燃煤電廠脫硫廢水在煙道中的蒸發及流動特性數值模擬

利用燃煤電廠尾部煙道的煙氣余熱來實現脫硫廢水的噴霧蒸發是實現其零排放的有效途徑,以國內某燃煤電廠330MW火力機組的煙道為研究對象,利用DPM模型對霧化液滴群在高溫煙道內的蒸發及流動特性進行了研究,考察了不同霧化嘴角情況下液滴碰壁情況、不同負荷下液滴的蒸發情況,研究結果表明:在50%、75%、100%煙氣負荷工況下,煙氣溫度越高、煙氣速度越快,霧化液滴群完全蒸發所需時間越少,液滴最大蒸發時間在2.85~3.36s之間。在單煙道結構的最佳噴嘴霧化錐角為65°情況下,越靠近煙道內側,渦的尺寸越大,越有利於促進噴嘴區的局部液滴群不斷向其他區域擴散。
中國是以煤炭為主要能源的國家,2017年燃煤火力發電量佔全年總發電量的67%。發電過程中煤炭燃燒產生的二氧化硫排放問題尤為引人關注,在一定的氣象條件下產生復雜的化學反應,是形成霧霾和酸雨的重要前驅體。石灰石-石膏濕法煙氣脫硫工藝應用最廣,然而,循環漿液將持續富集來自煙氣及脫硫劑中的重金屬元素和氯離子,從而產生高濃度的脫硫廢水,廢水直接排放對環境產生負面影響。
如採用常規工藝進行廢水零排放處理,則高濃度氯離子的腐蝕性對設備材質要求很高,造價昂貴。使用噴嘴將脫硫廢水霧化為液滴群並噴入空氣預熱器至電除塵器間的煙道內,利用高溫煙氣與常溫廢水的傳熱作用實現脫硫廢水的零排放,有投資少、工藝流程短、去除重金屬離子、建設工期短、維護成本低等特點,被推薦為實現脫硫廢水零排放的可行性技術。針對脫硫廢水液滴群在煙氣中蒸發與流動特性的優化是實現脫硫廢水煙道蒸發零排放的關鍵。
目前,國內外對於脫硫廢水煙道蒸發工藝的研究主要集中在以數值模擬的方式研究脫硫廢水蒸發特性、流動特性兩方面,同時,伴以一定的工程或實驗數據作為參照。張子敬等研究認為噴霧液滴群蒸發特性受到液滴加熱升溫(傳熱過程)和噴霧液滴群在煙氣中的擴散(傳質過程)兩方面的共同作用。Strotos G等建立了單個液滴在高溫燃氣中蒸發、運動過程的數學模型,獲得了不同燃氣溫度和速度下液滴的蒸發規律。
冉景煜等對不同物性液滴在低溫煙氣環境中的運動,以及受熱和蒸發過程中的傳熱傳質特性進行了理論分析。李明波等通過計算流體動力學軟體Fluent,對空氣預熱器出口至電除塵器入口段煙道內的煙氣流動情況進行了模擬。
Laín等的以拉格朗日湍流顆粒分散體模型的建立為基礎,提出攜帶稀薄粒子的氣流在一定條件下,假設粒子為球體,只考慮曳力和重力作用。Young等應用離散多組分(DMC)燃料液滴模型對多組分燃料噴霧的蒸發進行了數值模擬。Pinto等研究了雙流體噴嘴的噴霧乾燥,成功地預測了干舉碧燥時間和最終含水量隨著初始液滴直徑變化的趨勢。
晉銀佳等等提出深度過濾脫硫廢水預處理工藝,將脫硫廢水在霧化蒸發前進行固液深度分離預處理以解決硫廢水中懸浮顆粒物堵塞問題。
國內外學者已對液滴蒸發的機理進行了深入研究,重點考察煙氣溫度、速度、液滴直徑坦源、液滴速度對蒸發的影響,但是,不同霧化嘴角對脫硫廢水蒸發的影響尚未有明確的解釋,文中結合國內某燃煤電廠330MW機組空氣預熱器至電除塵器間的煙道中噴霧蒸發實現脫硫廢水零排放工程實踐,數值模擬不同煙氣負荷和不同噴霧錐角對脫硫廢水噴霧蒸發流動特性的影響。
1 方法與模型
脫讓答態硫廢水在煙道中噴霧蒸發屬於典型的氣液兩相流流動,在數值模擬中以空氣為連續相,以噴霧液滴為離散相,主要考慮連續相和離散相之間的相間運動和相互作用。首先,建立煙道的物理模型,根據連續相和離散相方程,以確定的邊界條件進行相應數值模擬計算。
1. 1 物理模型
圖1所示為空氣預熱器與電除塵器之間煙道和尺寸的物理模型。煙道分為入口段、下彎頭、豎直段煙道、上彎頭、異型彎頭和水平煙道6個部分。採用ANSA軟體對煙道幾何模型進行網格劃分,該煙道模型結構簡單,流場結構均勻,在計算速度上採用有明顯優勢的全六面體網格,生成總網格數為200萬。
經檢驗,該模型網格EquiSize Skew值在0~0.4之間的網格數佔98.09%,網格劃分質量較高。採用網格數分別為200萬和300萬和400萬的網格進行無關化驗證,對豎直段煙道內的6個點進行速度監測,3種網格計算結果相差不大,為了節省計算資源,選擇網格數量約為200萬的網格進行模擬,如圖2所示。
1. 2 數學模型
1. 2. 1 連續相方程
在氣液兩相流動中,盡管控制方程獨立,兩相卻是相互耦合的。液滴作為質量源、動量源和能量源被引入到氣相方程中,並通過這些源項影響氣相流場,氣相流場又反過來通過其速度場、溫度場、壓力場等來影響液滴的本身狀態。下列方程為氣相控制方程,其表達式分別如下。
連續性方程:
2 結果與分析
2. 1 煙氣負荷對液滴群蒸發及運動過程的影響
脫硫廢水在鍋爐尾部煙道中的霧化及流動、蒸發過程可分為初始階段和穩態階段。初始階段,常溫液滴群作為吸熱蒸發的分布熱匯,充分吸收煙氣流的余熱,所吸收的熱量大部分用於液滴群溫度的升高,同時,在煙氣速度的影響下,該階段的液滴群速度不斷增大;在很短時間內,霧化液滴群即達到穩態階段,此時,液滴群被煙氣加熱到穩定值,吸收的所有熱量都用於液滴群蒸發,液滴群速度與來流煙氣速度一致。
液滴群的蒸發效果主要由以下參數共同決定:氣相溫度、傳輸特性、液相溫度、運動速度以及氣液兩相的傳熱、傳遞效率,分別選取330MW機組50%、75%、100%煙氣負荷工況下,3種不同煙溫( 120.3、125.1、128.9℃)及煙速( 9.19、11.56、14.64m/s)的氣相條件對脫硫廢水蒸發及流動特性的影響作定量分析,並結合傳熱傳質理論加以解釋。
圖3顯示了50%、75%、100%3種不同煙氣負荷下,以不同的霧化錐角進行噴霧,運動液滴最大蒸發時間T的模擬結果, T值隨煙氣負荷的增加呈現近乎相同的線性下降趨勢。隨著負荷的增加煙氣量增加,煙道煙氣溫度降低減少,蒸發時間減少,其中,50%、75%及100%煙氣負荷工況運動液滴最大蒸發時間T分別在3.07~3.36s、2.85~3.04s和2.57~2.80s范圍內。
選取噴嘴霧化錐角65°配置下的各煙氣負荷顆粒運動軌跡,如圖4所示。
液滴群顆粒皆能蒸發完全,100%煙氣負荷對應的最大蒸發時間最短,50% 煙氣負荷對應的最大蒸發時間最長,由此可見,對於相同粒徑的液滴,氣體環境溫度越高、煙氣速度越快,液滴群的汽化速率越高、蒸發效果越好。
其中,由於100%負荷下煙氣速度相較於75%和50% 負荷時更快,則脫硫廢水顆粒衰減後的速度仍然較快,若煙道長度不足,仍有蒸發不完全的可能性,從圖中可看出,煙氣速度的變化對液滴最大完全蒸發時間的影響較小,故在單煙道結構中,煙氣溫度對蒸發效果起主導作用。
若煙氣溫度升高,則氣液兩相的溫差增大,氣體環境向液滴群的傳熱增強,從而使液滴表面蒸發及傳質擴散速率不斷增大,因此,液滴溫度持續升高,其到達臨界蒸發溫度所需時間變短,液滴自噴入煙道至完全蒸發的停留時間隨煙氣溫度升高而逐漸減少。
2. 2 霧化錐角對液滴群蒸發及運動過程的影響
為定量分析霧化錐角對霧化液滴群流動特性的影響,定義被煙道壁面捕捉的液滴數量占液滴顆粒總數比為A0。A0值可反映出脫硫廢水噴霧蒸發結晶後,在煙道內壁積灰的可能性大小。
圖5顯示了在20°、35°、50°、65°、80°、95°6種不同霧化錐角下在單煙道壁面被捕捉的液滴數量分數的模擬結果,A0值隨霧化錐角的變化呈現近乎相同的先平穩下降、後明顯上升趨勢。
圖5表明:在霧化錐角由20°至50°增加的過程中,A0值變化相對平穩,由於霧化角過小,液滴蒸發速度較慢,易撞擊頂部水平煙道;當霧化錐角增加至65°,煙道捕捉的液滴數達到最小值,說明65°霧化錐角在煙道內壁積灰可能性最小;霧化錐角由65°至95°繼續增大的過程中,A0值呈明顯增加趨勢,此時,由於霧化角過大液滴易撞擊豎直煙道,但霧化錐角大於90°後,增加速率有所放緩,且有下降趨勢,隨著霧化角的增大,液滴蒸發速度變快,液滴碰壁的可能性變小。
當噴嘴霧化錐角過小時,相同工況下液滴蒸發較慢。當液滴進入水平煙道時,由於液滴的直徑相對較大,隨流能力也就越弱,液滴越撞擊水平煙道形成積灰。當噴嘴霧化錐角過大時,液滴容易直接撞擊豎直煙道形成積灰。因此,存在1個最佳的霧化錐角使液滴的碰壁數量最小,經過驗證當霧化錐角為65°時撞擊煙道的液滴數量最小。
單煙道結構75%煙氣負荷工況下,最佳霧化錐角65°時,對於脫硫廢水蒸發及流動特性的定量及煙道截面速度矢量圖,如圖6所示。
由圖6可知,在噴霧蒸發的初始階段,傳質擴散及蒸發速率較快,噴霧對煙氣的剪切卷吸形成了一個較大的不規則的渦。
由於煙道內側的煙氣體積流量較大,噴嘴截面沿煙氣流動方向1m處煙氣以較快的速度沖入對牆,造成其上部有較大壓強差而形成迴流,故越靠近煙道內側,渦的形態越大,有利於促進噴嘴區的局部液滴群不斷向其他區域擴散。隨著蒸發及傳質擴散的進一步均勻化,噴霧蒸發進入穩態階段,煙道通流截面渦增大,截面渦的形態逐漸規則化,速度矢量場趨於穩定。
3 結 論
1 ) 50%、75%、100%3種煙氣負荷工況下,在單煙道壁面被捕捉的液滴數量分數隨霧化錐角的增加皆呈現先平穩下降、後明顯上升趨勢。
2)在20°、35°、50°、65°、80°、95°6種不同霧化錐角下運動液滴最大蒸發時間值隨煙氣負荷的增加呈現近乎相同的線性下降趨勢。在最佳噴嘴霧化錐角65°配置下,對於相同粒徑的液滴,氣體環境溫度越高、煙氣速度越快,液滴群的汽化速率越高、蒸發效果越好。其中,煙氣速度的變化對液滴最大完全蒸發時間的影響較小,煙氣溫度對蒸發效果起主導作用。脫硫廢水噴霧後形成的液滴群可在煙道中完全蒸發。
3 )最佳霧化錐角配置下的速度矢量圖顯示,越靠近煙道內側,渦的尺寸越大,有利於促進噴嘴區的局部液滴群不斷向其他區域擴散;噴霧蒸發初始階段的傳質擴散及蒸發速率較快,速度矢量圖呈現出一個較大的不規則的渦形態;噴霧蒸發穩態階段煙道通流截面渦增大、形態逐漸規則化,速度矢量場趨於穩定。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

閱讀全文

與脫硫廢水煙道霧化蒸發技術相關的資料

熱點內容
燃氣熱水器水垢除垢劑 瀏覽:854
飲水機出水壓力多少 瀏覽:957
反滲透膜內部水流程 瀏覽:805
pvc超濾膜可以家用嗎 瀏覽:895
南安生活污水怎麼處理 瀏覽:642
住戶居民個人違規排放污水怎麼辦 瀏覽:269
為什麼飲水機不做100 瀏覽:135
酚醛樹脂a階 瀏覽:708
凈水器制凈水少怎麼辦 瀏覽:436
污水管平面圖識圖 瀏覽:227
雨水管與污水管相撞怎麼施工 瀏覽:942
簡陽長春村污水處理 瀏覽:782
污水自動加葯系統設計 瀏覽:747
加濕機用蒸餾水 瀏覽:360
上海樹脂復合溝蓋板廠家直銷 瀏覽:423
熱水壺除水垢小妙招 瀏覽:831
廢水桶除垢 瀏覽:841
純化水反滲透膜機組 瀏覽:440
凈水器聲音響怎麼回事 瀏覽:193
晶元清洗回用 瀏覽:813