❶ CASS工藝計算書
1.2 目前CASS工藝設計計算方法 CASS工藝屬於活性污泥法范疇,但由於其運行方式獨特,與傳統活性污泥法又有很大的差別。在同一周期內,池內的污水體積、污染物的濃度、DO和MLSS時刻都在發生變化,是一種非穩態的反應過程。目前CASS工藝設計採用污泥負荷法,該方法不考慮反應池內基質濃度、MLSS和DO含量在時間上的變化,只考慮進出水有機物的濃度差,並忽略同一反應周期內沉澱、潷水和閑置階段的生物降解作用,採用與傳統活性污泥法基本相同的計算公式。CASS工藝採用污泥負荷法進行設計時,除反應池容積計算與傳統活性污泥法不同,其它如反應池DO和剩餘污泥排放量等計算方法與傳統活性污泥工藝相同,因此,本節著重介紹CASS工藝反應池容積的計算方法。1.2.1 計算BOD-污泥負荷(Ns)BOD-污泥負荷是CASS工藝的主要設計參數,其計算公式為: (1)式中: Ns——BOD-污泥負荷,kgBOD5/(kgMLSS·d),生活污水取0.05~0.1kgBOD5/(kgMLSS·d),工業廢水需參考相關資料或通過試驗確定; K2——有機基質降解速率常數,L/(mg·d); Se——混合液中殘存的有機物濃度,mg/L;
η——有機質降解率,%; �0�6——混合液中揮發性懸浮固體濃度與總懸浮固體濃度的比值,一般在生活污水中,�0�6=0.75。 (2)式中: MLVSS——混合液揮發性懸浮固體濃度,mg/L; MLSS——混合液懸浮固體濃度,mg/L;1.2.2 CASS池容積計算CASS池容積採用BOD-污泥負荷進行計算,計算公式為: (3)式中:V——CASS池總有效容積,m3; Q——污水日流量,m3/d; Sa、Se——進水有機物濃度和混合液中殘存的有機物濃度,mg/L;X——混合液污泥濃度(MLSS),mg/L; Ns——BOD-污泥負荷,kgBOD5/(kgMLSS·d); �0�6——混合液中揮發性懸浮固體濃度與總懸浮固體濃度的比值。1.2.3 容積校核 CASS池的有效容積由變動容積和固定容積組成。變動容積(V1)指池內設計最高水位和潷水器排放最低水位之間的容積;固定容積由兩部分組成,一部分是安全容積(V2),指潷水水位和泥面之間的容積,安全容積由防止潷水時污泥流失的最小安全距離決定;另一部分是污泥沉澱濃縮容積(V3),指沉澱時活性污泥最高泥面至池底之間的容積。 CASS池總的有效容積: V=n1×(V1+V2+V3) (4)式中:V——CASS池總有效容積,m3;V1——變動容積,m3;V2——安全容積,m3;V3——污泥沉澱濃縮容積,m3;n1——CASS池個數。設池內最高液位為H(一般取3~5m),H由三個部分組成:H=H1+H2+H3 (5)式中:H1——池內設計最高水位和潷水器排放最低水位之間的高度,m; H2——潷水水位和泥面之間的安全距離,一般取1.5~2.0m;H3——潷水結束時泥面的高度,m;其中: (6)式中: A——單個CASS池平面面積,m2; n2——一日內循環周期數;H3=H×X×SVI×10-3 (7)式中:X——最高液位時混合液污泥濃度,mg/L; 污泥負荷法計算的結果,若不能滿足H2≥H-(H1+H3),則必須減少BOD-污泥負荷,增大CASS池的有效容積,直到條件滿足為止。1.2.4 設計方法分析從上述設計方法的描述中可以看出,現行的CASS工藝設計具有以下幾個方面的特點:1、設計方法簡單,設計參數單一,在傳統的以污泥負荷為主要設計參數的活性污泥設計法基礎上,採用容積進行校核,以保證潷水過程中的污泥不流失。2、設計只針對主反應區容積,而生物選擇區容積則是按照主反應區容積的5%設計。3、污泥負荷法設計重點針對有機物質的降解,對脫氮未加考慮,難以滿足污水排放對於氮的要求,故此方法具有片面性,難以滿足高氨氮污水處理後達標排放。2 CASS工藝設計方法改進CASS工藝目前廣泛應用的設計方法是污泥負荷法,污泥負荷法立足於有機物的去除,對系統脫氮效果則未加考慮,而對於高氨氮污水,脫氮效果的考慮更為重要,因此需結合目前已有的CASS工藝設計方法,加入脫氮工藝設計,對傳統的CASS工藝設計方法進行改進。2.1 CASS工藝設計方法改進的思路高氨氮的污水脫氮設計的改進思路如下:1、設計採用靜態法。設計方法不追蹤CASS反應池內基質和活性污泥濃度在時間上的變化過程,而是著重於在某一進水水質條件下經系統處理後能達到的最終處理效果。對於同步硝化反硝化,由於其機理還處在進一步研究階段,在設計中不加考慮。對於沉澱和潷水階段的生物反應,其作用並不明顯,因此在設計中對這兩個階段的生物反應不加考慮。2、將主反應區和預反應區分開設計,主反應區主要功能為有機物降解和硝化,而預反應區的功能主要為生物選擇和反硝化脫氮。3、主反應區採用泥齡法設計,而將污泥負荷作為導出參數,結合試驗研究的結論,通過污泥負荷對設計結果進行校核。4、反應池的尺寸通過進水量和污泥沉降性能確定。2.2 主反應區容積設計主反應區設計採用泥齡法,並用污泥負荷進行校核,其設計步驟如下:1、計算硝化菌的最大比增長速率當污水pH和DO都適合於硝化反應進行時,計算亞硝酸菌的比增長速率公式為: (8)式中:μN,max——硝化菌的最大比增長速率,d-1;T——硝化溫度,℃;2、計算穩定運行狀態下的硝化菌比增長速率 (9)式中:μN——硝化菌的比增長速率,d-1;N——硝化出水的NH3-N濃度,mg/L;KN——飽和常數,設計中一般取1.0mg/L。3、計算完成硝化反應所需的最小泥齡 (10) 式中: ——最小泥齡,d;μN——硝化菌的比增長速率,d-1。4、計算泥齡設計值 本處採用Lawrence和McCarty在應用動力學理論進行生物處理過程設計時提出的安全系數(SF)概念,SF可以定義為:SF= / (11)式中: ——設計泥齡,d;SF使生物硝化單元在pH值、溶解氧濃度不滿足要求或者進水中含有對硝化有抑製作用的有毒有害物質時仍能保證達到設計所要求的處理效果。美國環保局建議一般取1.5~3.0。5、計算以VSS為基礎的含碳有機物(COD)的去除速率活性異養菌生物固體濃度X1可用下式計算: (12)式中:X1——活性異養菌生物固體濃度,mg/L;YH——異養菌產率系數,gVSS/gCOD或gVSS/gBOD; bH——異養菌內源代謝分解系數,d-1; S0——進水有機物濃度,mgCOD/L或mgBOD/L; S1——出水有機物濃度,mgCOD/L或mgBOD/L; ——設計泥齡,d; t——水力停留時間,d; 活性生物固體表觀產率系數,YH,NET將含碳有機物的去除速率定義為: (13)則可以得到下式:1/ =YH,NET·qH (14) 曝氣池混合液VSS由三部分組成:活性生物固體、微生物內源代謝分解殘留物和吸附在活性污泥上面不能為微生物所分解的進水有機物,VSS濃度可以表示為: (15) 式中:X——VSS濃度,mg/L; △S——基質濃度變化,mgCOD/L或mgBOD/L; YH——以VSS為基礎的產率系數,gVSS/gCOD或gVSS/gBOD; b——以VSS為基礎的活性污泥分解系數,d-1;以VSS為基礎的(濃度為X)的有機物去除速率可以表示為:1/ =YH,NET·qOBS (16)6、計算生化反應器水力停留時間t (17)7、主反應區容積:VN=Q t (18)式中:VN——主反應區容積,m3;Q——進水流量,m3/d;8、有機負荷校核有機負荷F/M: (19)式中:�0�6——MLVSS/MLSS,一般取0.7。根據相關試驗結論,若F/M不在0.18~0.25 kgCOD/(kgMLSS·d),則需改變泥齡,進行重新設計。10、氨氮負荷校核氨氮負荷SNR: (20)式中:N——主反應區產生NO3-N總量TKN,mg/L。根據相關試驗結論,若SNR>0.045 kg NH3-N/(kgMLSS·d),則需增大泥齡,進行重新設計。2.3 預反應區容積設計 預反應區的功能設計為反硝化,其設計步驟如下: 1、計算反硝化速率SDNR反硝化速率可以根據試驗結果或文獻報道值確定,也可以按下面的方法計算:溫度20℃時:SDNR ( 2 0) =0.3F/M+0.029(21)溫度T℃時: SDNR (T)= SDNR (2 0) ·θ( T- 2 0 ) (θ為溫度系數,一般取1.05) (22)2、缺氧池的MLVSS總量為:LA=QND/ SDNR (T) (23)式中:ND——反硝化去除的NO3-N,kgN/d。3、缺氧池的容積:VAN=1000LA/X�0�6 (24)4、缺氧池的水力停留時間:tA=VAN/Q (25)5、系統的總泥齡: (26)2.4 反應器尺寸的確定CASS反應器尺寸的確定主要是確定反應器的高度和面積,以滿足泥水分離和潷水的需要。由於預反應區始終處於反應狀態,不存在泥水分離的問題,且預反應區底部通過導流孔與主反應區相連,其水面高度與主反應區平齊,因此計算出主反應區的設計高度也同時計算出了預反應區的水面高度。所以反應區尺寸的確定主要是主反應區尺寸的確定。CASS池的泥水分離和SBR相同,生物處理和泥水分離結合在CASS池主反應區中進行,在曝氣等生物處理過程結束後,系統即進入沉澱分離過程。在沉澱過程初期,曝氣結束後的殘余混合能量可用於生物絮凝過程,至池子趨於平靜正式開始沉澱一般持續10min左右,沉澱過程從沉澱開始後一直延續至潷水階段結束,沉澱時間為沉澱階段和潷水階段的時間總和。污泥泥面的位置則主要取決於污泥的沉降速度,污泥沉速主要與污泥濃度、SVI等因素有關,在CASS系統中,污泥的沉降速度vS可簡單地用下式計算:vS=650/(XT×SVI) (27)式中:vS——污泥沉速(m/h);XT——在最高水位時濃度(kg/m3),為安全計,採用主反應區中設計值 X,一般取3000~4200 mg/L;SVI——污泥沉降指數(mL /g)。為避免在潷水過程中將活性污泥帶出系統,需要在潷水水位和污泥泥面之間保持一最小的安全距離HS。為保持潷水水位和污泥泥面之間的最小安全距離,污泥經沉澱和潷水階段後,其污泥沉降距離應≥ΔH+HS,期間所經歷的實際沉澱時間為(ts+td-10/60)h,故可得下式:vS×(ts +td -10/60)=ΔH+HS (28) 式中:ΔH——最高水位和最低水位之間的高度差,也稱潷水高度(m),ΔH一般不超過池子總高的40%,與潷水裝置的構造有關,一般其值最大在2.0~2.2m左右;ts——沉澱時間;td——潷水時間。聯立式(6.47)和(6.48)即可得: (29) 式中:ΔV——周期進水體積(m3);A——池子面積(m2);HT——最高水位(m);式中沉澱時間ts、潷水時間td可預先設定,根據水質條件和設計經驗可選擇一定的SVI值,安全高度HS一般在0.6~0.9m左右。ΔV由進水量決定,這樣式(29)中只有池子高度HT和面積A未定。根據邊界條件用試演算法即可求得式(29)中的池子高度和面積。高度HT和面積A的確定方法為:先假定某一池子高度HT,用式(29)求得面積A,從而可求得潷水高度ΔH,如潷水高度超過允許的范圍,則重新設定池子高度,重復上述過程。在求得HT和池子面積A後,即可求得最低水位HB: HB=HT-△H=HT-ΔV/A(30)最高水位時的MLSS濃度XT已知,最低水位時的MLSS濃度則可相應求得:XB=XT×HT /HB(31)最低水位時的設計MLSS濃度一般應不大於6.0kg/m3。2.5 剩餘污泥計算每日從系統中排出的VSS重量為L:L=X�0�6 (VAN+VN) / θ (32)式中:L——每日從系統中排出的VSS重量,kg/d。2.6 需氧量計算1、BOD的去除量:O1=Q (S0-S1)/1000(33)2、氨氮的氧化量:O2=QN/1000 (34)3、生物硝化系統,含碳有機物氧化需氧量與泥齡和水溫有關系,每去除1kgBOD需氧1.0~1.3kg,一般取1.1,則碳氧化和硝化需氧量為:O3=1.1O1+O2(35)4、每還原1kg NO3-N需2.9kgBOD,由於利用水中的BOD作為碳源反硝化減氧需要量為:O4=2.9 NDQ/1000(36) 實際需氧量:O= O3-O4(37
❷ 深度解析CASS工藝(周期循環活性污泥法)
CASS工藝是將序批式活性污泥法(SBR)的反應池沿長度方向分為兩部分,前部為生物選擇區也稱預反應區,後部為主反應區。在主反應區後部安裝了可升降的潷水裝置,實現了連續進水間歇排水的周期循環運行,集曝氣沉澱、排水於一體。CASS工藝是一個厭氧/缺氧/好氧交替運行的過程,具有一定脫氮除磷效果,廢水以推流方式運行,而各反應區則以完全混合的形式運行以實現同步硝化一反硝化和生物除磷。
CASS工藝流程介紹
對於一般城市污水,CASS工藝並不需要很高程度的預處理,只需設置粗格柵、細格柵和沉砂池,無需初沉池和二沉池,也不需要龐大的污泥迴流系統(只在CASS反應器內部有約20%的污泥迴流)國內常見的CASS工藝流程如圖1所示。
(1)充水-曝氣階段
邊進水邊曝氣,同時將主反應區的污泥迴流至生物選擇區,一般迴流比為20%。在此階段,曝氣系統向反應池內供氧,一方面滿足好氧微生物對氧的需要,另一方面有利於活性污泥與有機物的充分混合與接觸,從而有利於有機污染物被微生物氧化分解。同時,污水中的氨氮通過微生物的硝化作用轉變為硝態氮。
(2)沉澱階段
停止曝氣,微生物繼續利用水中剩餘的溶解氧進行氧化分解。隨著反應池內溶解氧的進一步降低,微生物由好氧狀態向缺氧狀態轉變,並發生一定的反硝化作用。與此同時,活性污泥在幾乎靜止的條件下進行沉澱分離,活性污泥沉至池底,下一個周期繼續發揮作用,處理後的水位於污泥層上部,靜置沉澱使泥水分離。
(3)潷水階段
沉澱階段完成後,置於反應池末端的潷水器開始工作,自上而下逐層排出上清液,排水結束後潷水器自動復位。潷水期間,污泥迴流系統照常工作,其目的是提高缺氧區的污泥濃度,隨污泥迴流至該區內的污泥中的硝態氮進一步進行反硝化,並進行磷的釋放。
(4)閑置階段
閑置階段的時間一般比較短,主要保證潷水器在此階段內上升至原始位置,防止污泥流失。實際潷水時間往往比設計時間短,其剩餘時間用於反應器內污泥的閑置以及恢復污泥的吸附能力。
CASS工藝的優點
(1)工藝流程簡單,佔地面積小,投資較低
CASS的核心構築物為反應池,沒有二沉池及污泥迴流設備,一般情況下不設調節池及初沉池。
(2)生化反應推動力大
在完全混合式連續流曝氣池中的底物濃度等於二沉池出水底物濃度,底物流入曝氣池的速率即為底物降解速率。根據生化動力反應學原理,由於曝氣池中的底物濃度很低,其生化反應推動力也很小,反應速率和有機物去除效率都比較低;在理想的推流式曝氣池中,污水與迴流污泥形成的混合流從池首端進入,成推流狀態沿曝氣池流動,至池末端流出。
作為生化反應推動力的底物濃度,從進水的最高濃度逐漸降解至出水時的最低濃度,整個反應過程底物濃度沒被稀釋,盡可能地保持了較大推動力。此間在曝氣池的各斷面上只有橫向混合,不存在縱向的返混。
CASS工藝從污染物的降解過程來看,當污水以相對較低的水量連續進入CASS池時即被混合液稀釋,因此,從空間上看CASS工藝屬變體積的完全混合式活性污泥法范疇;而從CASS工藝開始曝氣到排水結束整個周期來看,基質濃度由高到低,濃度梯度從高到低,基質利用速率由大到小,因此,CASS工藝屬理想的時間順序上的推流式反應器,生化反應推動力較大。
(3)沉澱效果好
CASS工藝在沉澱階段幾乎整個反應池均起沉澱作用,沉澱階段的表面負荷比普通二次沉澱池小得多,雖有進水的干擾,但其影響很小,沉澱效果較好。實踐證明,當冬季溫度較低,污泥沉降性能差時,或在處理一些特種工業廢仔滑水污泥凝聚性能差時,均不會影響CASS工藝的正常運行。實驗和工程中曾遇到SV高達96%的情況,只要將沉澱階段的時間稍作延長,系統運行不受影響。
(4)運行靈活,抗沖擊能力強
CASS工藝在設計時已考慮流量變化的因素,能確保污水在系統內停留預定的處理時間後經沉澱排放,特別是CASS工藝可以通過調節運行周期來適應進水量和水質的變化。當進水濃度較高時,也可通過延長曝氣時間實現念好臘達標排放,達到抗沖擊負荷的目的。在暴雨時。可經受平常平均流襪塌量6倍的高峰流量沖擊,而不需要獨立的調節池。
多年運行資料表明。在流量沖擊和有機負荷沖擊超過設計值2~3倍時,處理效果仍然令人滿意。而傳統處理工藝雖然已設有輔助的流量平衡調節設施,但還很可能因水力負荷變化導致活性污泥流失,嚴重影響排水質量。當強化脫氮除磷功能時,CASS工藝可通過調整工作周期及控制反應池的溶解氧水平,提高脫氮除磷的效果。所以,通過運行方式的調整,可以達到不同的處理水質。
(5)不易發生污泥膨脹
污泥膨脹是活性污泥法運行過程中常遇到的問題,由於污泥沉降性能差,污泥與水無法在二沉池進行有效分離,造成污泥流失,使出水水質變差,嚴重時使污水處理廠無法運行,而控制並消除污泥膨脹需要一定時間,具有滯後性。因此,選擇不易發生污泥膨脹的污水處理工藝是污水處理廠設計中必須考慮的問題。
由於絲狀茵的比表面積比茵膠團大,因此,有利於攝取低濃度底物,但一般絲狀茵的比增殖速率比非絲狀茵小,在高底物濃度下茵膠團和絲狀茵都以較大速率降解物與增殖,但由於膠團細菌比增殖速率較大,其增殖量也較大,從而較絲狀茵占優勢。
而CASS反應池中存在著較大的濃度遞度,而且處於缺氧、好氧交替變化之中,這樣的環境條件可選擇性地培養出茵膠團細菌,使其成為曝氣池中的優勢茵屬,有效地抑制絲狀茵的生長和繁殖,克服污泥膨脹,從而提高系統的運行穩定性。
(6)適用范圍廣,適合分期建設
CASS工藝可應用於大型、中型及小型污水處理工程,比SBR工藝適用范圍更廣泛;連續進水的設計和運行方式,一方面便於與前處理構築物相匹配,另一方面控制系統比SBR工藝更簡單。對大型污水處理廠而言,CASS反應池設計成多池模塊組合式,單池可獨立運行。當處理水量小於設計值時,可以在反應池的低水位運行或投入部分反應池運行等多種靈活操作方式;由於CASS系統的主要核心構築物是CASS反應池,如果處理水量增加,超過設計水量不能滿足處理要求時,可同樣復制CASS反應池,因此CASS法污水處理廠的建設可隨企業的發展而發展,它的階段建造和擴建較傳統活性污泥法簡單得多。
(7)剩餘污泥量小,性質穩定
傳統活性污泥法的泥齡僅2~7天,而CASS法泥齡為25~30天,所以污泥穩定性好,脫水性能佳,產生的剩餘污泥少。去除1.0kgBOD產生0.2~0.3kg剩餘污泥,僅為傳統法的60%左右。由於污泥在CASS反應池中已得到一定程度的消化,所以剩餘污泥的耗氧速率只有10mgO2/gMISS•h以下,一般不需要再經穩定化處理,可直接脫水。而傳統法剩餘污泥不穩定,沉降性差,耗氧速率大於20mgO2/gMLSS•h,必須經穩定化後才能處置。
CASS工藝的缺點
CASS工藝為單一污泥懸浮生長系統,利用同一反應器中的混合微生物種群完成有機物氧化、硝化、反硝化和除磷。多種處理功能的相互影響在實際應用中限制了其處理效能,也給控制提出了非常嚴格的要求,工程中難以實現工藝的穩定、高效的運行。
(1)微生物種群之間的復雜關系有待研究
CASS系統的微生物種群結構與常規活性污泥法不同,菌群主要由硝化菌、反硝化菌、聚磷菌和異氧型好氧菌組成。目前對非穩態CASS系統中微生物種群之間的復雜的生存競爭和生態平衡關系尚不甚了解,CASS工藝理論只是從工藝過程進行一些分析探討。
(2)生物脫氮效率難以提高
一方面硝化反應難以進行完全。硝化細菌是一種化能自養菌,有機物降解由異養細菌完成。當兩種細菌混合培養時,由於存在對底物和DO的競爭,硝化菌的生長將受到限制,難以成為優勢種群,硝化反應被抑制。此外,固定的曝氣時間也可能會使得硝化不徹底。另一方面就是反硝化反應不徹底。CASS工藝有約20%的硝態氮通過迴流污泥進行反硝化,其餘的硝態氮則通過同步硝化反硝化和沉澱、閑置期污泥的反硝化實現。在沉澱、閑置期中,由於污泥與廢水不能良好的進行混合,廢水中部分硝態氮不能與反硝化細菌接觸,故不能被還原。此外,在這一時期,由於有機物己充分降解,反硝化所需的碳源不足,也限制了反硝化效率的進一步提高。
(3)除磷效率難以提高
污泥在生物選擇器中的釋磷過程受到迴流混合液中硝態氮濃度的影響比較大,難以繼續提高除磷效率。
(4)控制方式較為單一
目前在實際應用中的CASS工藝基本上都是以時序控制為主的,但污水的水質不是一成不變的,因此採用固定不變的反應時間必然不是最佳選擇。
CASS工藝的主要技術特徵
(1)連續進水,間斷排水
傳統SBR工藝為間斷進水,間斷排水,而實際污水排放大都是連續或半連續的,CASS工藝可連續進水,克服了SBR工藝的不足,比較適合實際排水的特點,拓寬了SBR工藝的應用領域。雖然CABS工藝設計時均考慮為連續進水,但在實際運行中即使有間斷進水,也不影響處理系統的運行。
(2)運行上的時序性
CASS反應池通常按曝氣、沉澱、排水和閑置四個階段根據時間依次進行。
(3)運行過程的非穩態性
每個工作周期內排水開始時CANS池內液位最高,排水結束時,液位最低,液位的變化幅度取決於排水比,而排水比與處理廢水的濃度、排放標准及生物降解的難易度等有關。反應池內混合液體積和基質濃度均是變化的,基質降解是非穩態的。
(4)溶解氧周期性變化,濃度梯度高
CASS在反應階段是曝氣的,微生物處於好氧狀態,在沉澱和排水階段不曝氣,微生物處於缺氧甚至厭氧狀態。因此。反應池中溶解氧是周期性變化的,氧濃度梯度大、較多效率高,這對於提高脫氮除磷效率、防止污泥膨脹及節約能耗都是有利的。實踐證實對同樣的曝氣設備而言。CASS工藝與傳統活性污泥法相比有較高的氧利用率。
CASS工藝與其他工藝比較
1、CASS與SBR的比較
CASS反應池由預反應區和主反應區組成,預反應區控制在缺氧狀態,因此,對難降解有機物的去除效果提高;CASS進水過程連續,因此進水管道上無電磁閥控制元件,單個池子可獨立運行,而SBR或CAST進水過程是間歇的,應用中一般要2個或2個以上池子交替使用,控制系統復雜程度增加。CASS每個周期的排水量一般不超過池內總水量的1/3,而SBR則為1/2-3/4,CASS抗沖擊能力較好。CASS比CAST系統簡單,但脫氮除磷效果不如後者。
CASS池分預反應區和主反應區。在預反應區內,微生物能通過酶的快速轉移機理迅速吸附污水中大部分可溶性有機物,經歷一個高負荷的基質快速積累過程,這對進水水質、水量、PH和有毒有害物質起到較好的緩沖作用,同時對絲狀菌的生長起到抑製作用,可有效防止污泥膨脹;隨後在主反應區經歷一個較低負荷的基質降解過程。
CASS工藝集反應、沉澱、排水、功能於一體,污染物的降解在時間上是一個推流過程,而微生物則處於好氧、缺氧、厭氧周期性變化之中,從而達到對污染物去除作用,同時還具有較好的脫氮、除磷功能。
CASS生物處理法經過模擬試驗研究,已成功應用於生活污水、食品廢水、制葯廢水的治理,取得了良好的處理效果。在反應器的前部設置了生物選擇區,後部設置了可升降的自動潷水裝置,最大限度降低了排水時水流對底部沉澱污泥的擾動。其工作過程可分為曝氣、沉澱和排水三個階段,周期循環進行。污水連續進入預反應區,經過隔牆底部進入主反應區,在保證供氧的條件下,使有機物被池中的微生物降解。根據進水水質可對運行參數進行調整。
2、與傳統活性污泥法相比
(1)建設費用低:省去了初次沉澱池、二次沉澱池及污泥迴流設備,建設費用可節省10%~25%。以10萬噸的城市污水處理廠為例,傳統活性污泥法的總投資約1.5億,CASS法總投資約1.1億。
(2)工藝流程短,佔地面積少:污水廠主要構築物為集水池、沉砂池、CASS曝氣池、污泥池,而沒有初次沉澱池、二次沉澱池,布局緊湊,佔地面積可減少20%~35%。
(3)運轉費用省:由於曝氣是周期性的,池內溶解氧的濃度也是變化的,沉澱階段和排水階段溶解氧降低,重新開始曝氣時,氧的濃度梯度大,傳遞效率高,節能效果顯著,運轉費用可節省10%~25%。
(4)有機物去除率高,出水水質好:根據研究結果和工程應用情況,通過合理的設計和良好的管理,對城市污水,進水COD為400mg/L時,出水小於30mg/L以下。對可生物降解的工業廢水,即使進水COD高達3000mg/L,出水仍能達到50m g/L左右。對一般的生物處理工藝,很難達到這樣好的水質。所以,對CASS工藝,二級處理的投資,可達到三級處理的水質。
(5)管理簡單,運行可靠:污水處理廠設備種類和數量較少,控制系統比較簡單,工藝本身決定了不發生污泥膨脹。
(6)污泥產量低,污泥性質穩定。
(7)具有脫氮除磷功能。
CASS工藝的設計
1、CASS反應器的主要設計參數
最大設計水深可達5m~6m,MLSS為3500mg/L~4000mg/L,充水比為30%左右,最大上清液潷除速率為30mm/min,固液分離時間60min,設計SVI為140mL/g,單循環時間(即1個運行周期)通常為4h(標准處理模塊)。處理城市污水時,CASS中生物選擇器、缺氧區和主反應區的容積比一般為1∶5∶30,具體可根據水質和「模塊」試驗加以確定。表1列出了CASS工藝處理不同規模城市污水時的參考設計參數。
2、CASS設計中應注意的問題
(1)水量平衡
工業廢水和生活污水的排放通常是不均勻的,如何充分發揮CASS反應池的作用,與選擇的設計流量關系很大,如果設計流量不合適,進水高峰時水位會超過上限,進水量小時反應池不能充分利用。當水量波動較大時,應考慮設置調節池。
(2)控制方式的選擇
CASS工藝的特點是程序工作制,可根據進水及出水水質變化來調整工作程序,保證出水效果。整套控制系統可採用現場可編程式控制制(PLC)與微機集中控制相結合,同時為了保證CASS工藝的正常運行,所有設備採用手動/自動兩種操作方式,後者便於手動調試和自控系統故障時使用,前者供日常工作使用。
(3)曝氣方式的選擇
選擇曝氣頭時要盡量採用不堵塞的曝氣形式,如穿孔管、水下曝氣機、傘式曝氣器、螺旋曝氣器等。採用微孔曝氣時應採用強度高的橡膠曝氣盤或管,當停止曝氣時,微孔閉合,曝氣時開啟,不易造成微孔堵塞。此外,由於CASS工藝自身的特點,選用水下曝氣機還可根據其運行周期和DO等情況適當開啟不同的台數,達到在滿足廢水要求的前提下節約能耗的目的。
(4)排水方式的選擇
CASS工藝的排水要求與SBR相同,目前,常用的設備為旋轉式撇水機,其優點是排水均勻、排水量可調節、對底部污泥干擾小,又能防止水面漂浮物隨水排出。CASS工藝沉澱結束需及時將上清液排出,排水時應盡可能均勻排出,不能擾動沉澱在池底的污泥層,同時,還應防止水面的漂浮物隨水流排出,影響出水水質。目前,常見的排水方式有固定式排水裝置如沿水池沒深度裝置出水管,從上到下依次開啟,優點是排水設備簡單、投資少,缺點是開啟閥門多、排水管中會積存部分污泥,造成初期出水水質差。浮動式排水裝置和旋轉式排水裝置雖然價格高,但排水均勻、排水量可調、對底部污泥干擾小,又能防止水面漂浮物隨出水排出,因此,這兩中排水裝置耳前應用較多,尤其旋轉式排水裝置,又稱潷水器,操作靈活、運行穩定性高。
(5)需要注意的其它問題
1)冬季或低溫對CASS工藝的影響及控制;
2)排水比的確定;
3)雨季對池內水位的影響及控制;
4)排泥時機及泥齡控制;
5)預反應區的大小及反應池的長寬比:
6)間斷排水與後續處理構築物的高程及水量匹配問題。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
❸ CASS工藝設計計算標准
你問的比較籠統,回答系統沒法給你更多的圖標公式或者什麼東西。計算這個東西其實不難,你可以從設計手冊或者專業書籍上找到答案。
如果你想省事,不如去下載一個計算公式或者設計軟體,直接套數進去就是了,當然你可以自己編輯一個也行。
我這里找了兩個你看看能不能用:
http://wenku..com/view/32a2baacdd3383c4bb4cd2c6.html
http://wenku..com/view/4e3c16254b35eefdc8d333e8.html
❹ 什麼是污水處理cass工藝,什麼是AO工藝
給你簡單的說一下:
1、CASS工藝你可以理解為在一個池子里完成所有反應,他分階段進行處理,回每個答階段算一個周期,比如4小時內完成一系列反應,在4小時內,曝氣時完成好氧反應,停止曝氣時完成厭氧和兼氧反應,之後取出上清液排放,排放完成後算一個周期,再進水進行下一個周期。
2、AO工藝就是厭氧+好氧工藝,厭氧里有攪拌器,好氧里有曝氣。
❺ 求CASS工藝處理小區污水畢業設計,某小區生活污水處理站日處理量為400m3/d,出水用作景觀水。
1概述建築小區是具有一種功能或多種功能的相對獨立的區域,其排水系統通常不在城市市政管網覆蓋范圍之內。根據當地的環保標准,必須設置獨立的污水處理設施,這就是我們所指的小區污水處理。小區污水系統的處理能力,各國並無統一的限定。前蘇聯曾建議單個構築物的處理能力不宜超過1400m3/d,美國則把處理能力限定在3785m3/d的范圍內。根據我國情況,建議把污水量在4000m3/d以下的處理廠定義為小區污水處理廠。小區污水不同於城市污水(常包括部分工業廢水),屬於生活污水范疇。其水質水量特徵可概括為:水質水量變化較大,污染物濃度偏低,即比城市污水低,污水可生化性好,處理難度小。小區污水的處理工藝因污水排入的水體功能不同而異,常用處理方法有:化糞池、一級處理 (初次沉澱池)、生物二級處理及二級處理後再經過濾消毒回用等。由於小區污水量較小,管理者水平不高,所以在工藝設計時盡可能選用無污泥或少污泥的處理工藝,以防因污泥處理不善造成二次污染。本文在介紹小區污水處理設計原則及常用流程的基礎上,重點介紹了周期循環活性污泥(CASS)工藝處理小區污水及回用的設計參數與應用情況。 2小區污水處理設計原則及常用流程 2.1設計原則 (1)一般來說,不同小區對出水的要求差異較大,應根據我國《地面環境質量標准》(GB3838 -88)和《污水綜合排放標准》(GB8978-96)的有關規定和當地環保部門的要求確定處理程度,以確保出水水質。
(2)污水處理設施的設計和建設必須結合小區的整體規劃和建築特點,即外觀設計上要與小區建築環境相協調,以求美觀。
(3)在污水處理工藝上力求簡單實用,以方便管理。
(4)在高程布置上應盡量採用立體布局,充分利用地下空間。平面布置上要緊湊,以節省用地。
(5)污水處理廠位置應盡可能位於小區下風向,與其它建築物有一定的距離,以減少對環境的影響。
(6)設備化,定型化,模塊化,施工安裝方便,運行簡易,設備性能穩定,適合分期建設。
(7)處理程度高,污泥產量少,並盡可能採用節能處理技術。
(8)處理構築物對水力負荷和有機物負荷的適應范圍較大,使系統有較好的經受沖擊負荷的能力。
(9)小區內的人口是逐漸增加的,因此小區污水處理廠應留有發展餘地。 2.2常用流程根據小區廢水處理的原則,應選擇處理效果穩定、產泥少、節能的處理方法。小區系統中的各類建築物一般均建有化糞池,所以化糞池應與污水處理方法相結合。常用的工藝流程有: ①污水→格柵→調節池→提升泵→接觸氧化池→沉澱池 →出水。
②污水→格柵→調節池→提升泵→曝氣池→沉澱池污泥迴流→出水。
③污水→格柵→調節池→提升泵→SBR池或CASS池→出水。
④污水→格柵→調節池→提升泵→混凝沉澱(加葯)→過濾→出水(物化方法)。
⑤污水→格柵→調節池→提升泵→接觸氧化池→混凝過濾(加葯)→出水。 國內小區污水處理設計中組合式處理廠曾風靡一時,組合式處理指裝配好的或易於組裝的定型設備,其主要優點是施工快,不佔綠地。但實際應用表明,存在不少問題。如設備的維修管理困難,對運行情況考核不便,單機處理水量有限,使用壽命等均有待時間驗證。根據工程設計及實際運行經驗,建議日處理能力1000m3以上的污水處理廠宜採用地上式。在水量不大,場地十分緊張時可考慮用埋地設備。 3CASS工藝處理小區污水3.1工作原理 CASS(Cyclic Activated Sludge System)是在SBR的基礎上發展起來的,即在SBR池內進水端增加了一個生物選擇器,實現了連續進水(沉澱期、排水期仍連續進水),間歇排水。設置生物選擇器的主要目的是使系統選擇出絮凝性細菌,其容積約占整個池子的10%。生物選擇器的工藝過程遵循活性污泥的基質積累--再生理論,使活性污泥在選擇器中經歷一個高負荷的吸附階段(基質積累),隨後在主反應區經歷一個較低負荷的基質降解階段,以完成整個基質降解的全過程和污泥再生。據有關資料介紹,污泥膨脹的直接原因是絲狀菌的過量繁殖。由於絲狀菌比菌膠團的比表面積大,因此有利於攝取低濃度底物。但一般絲狀菌的比增殖速率比非絲狀菌小,在高底物濃度下菌膠團和絲狀菌都以較大速率降解底物與增殖,但由於膠團細菌比增殖速率較大,其增殖量也較大,從而較絲狀菌占優勢,這樣利用基質作為推動力選擇性地培養膠團細菌,使其成為曝氣池中的優勢菌。所以,在CASS池進水端增加一個設計合理的生物選擇器,可以有效地抑制絲狀菌的生長和繁殖,克服污泥膨脹,提高系統的運行穩定性。 CASS工藝對污染物質降解是一個時間上的推流過程,集反應、沉澱、排水於一體,是一個好氧-缺氧-厭氧交替運行的過程,因此具有一定脫氮除磷效果。 3.2與傳統活性污泥法的比較與傳統活性污泥工藝相比,CASS工藝具有以下優點: (1)建設費用低。省去了初次沉澱池、二次沉澱池及污泥迴流設備,建設費用可節省20%~30 %。工藝流程簡潔,污水廠主要構築物為集水池、沉砂池、CASS曝氣池、污泥池,布局緊湊,佔地面積可減少35%。 (2)運轉費用省。由於曝氣是周期性的,池內溶解氧的濃度也是變化的,沉澱階段和排水階段溶解氧降低,重新開始曝氣時,氧濃度梯度大,傳遞效率高,節能效果顯著,運轉費用可節省10%~25%。 (3)有機物去除率高,出水水質好。不僅能有效去除污水中有機碳源污染物,而且具有良好的脫氮、除磷功能。 (4)管理簡單,運行可靠,不易發生污泥膨脹。污水處理廠設備種類和數量較少,控制系統簡單,運行安全可靠。 (5)污泥產量低,性質穩定。 3.3曝氣方式的選擇由於小區大都是居民居住區,對環境的要求比較高,因此污水廠建設時應充分考慮噪音擾民問題和污水廠操作人員的工作環境,採用水下曝氣機代替傳統的鼓風機曝氣可有效解決噪音污染。另外,由於CASS工藝獨特的運行方式,採用水下曝氣機可省去復雜的管路及閥門,安裝、維修方便,使用靈活,可根據進出水情況開不同的台數,在保證效果的條件下,達到經濟運行的目的。 3.4撇水方式的選擇撇水機是CASS工藝的關鍵組成部分,其性能是否穩定可靠直接影響到CASS工藝的正常運行。目前,國內外對撇水機仍在進行研究和開發,按照目前所用的原理,撇水機可分為三種類型,即浮球式、旋轉式和虹吸式。撇水機研製的關鍵是解決潷水過程中,堰口、導水軟管和升降控制裝置與水流之間形成的動態平衡,使之可隨排水量的不同調整浮動水堰浸沒的深度,並隨水位均勻地升降,將排水對底層污泥的干擾降低到最低限度,保證出水水質穩定。我院自主研製開發的撇水機屬絲杠旋轉式,自動撇水裝置主要組成部分是:潷水器、可擾動的軟管、水位控制器、可伸縮推動桿和驅動電機等。其中潷水器又叫自動浮動式水堰,上部為堰口和防止浮渣進入出水的浮筒,下部出水管兼起支撐作用,部分浸沒在水中,通過可伸縮推動桿使方形堰口達到連續均勻地排出反應池中的上清液。具有升降平穩、排水均勻、自動控制、價格低廉等優點。3.5主要設計參數 CASS設計參數:污泥負荷0.1~0.2 kg BOD5/(kgMLSS·d),污泥齡15~30 d。水力停留時間12 h,工作周期4 h,其中曝氣2.5 h,沉澱0.75 h,排水0.5~0.75 h。 4CASS工藝的出水回用眾所周知,水資源緊缺已經成為世界性問題。我國也同樣面臨水資源短缺的現實。我國目前人均年佔有水資源2700m3,僅相當於世界平均水平的1/4。我國的城市缺水現象更為嚴重,在300多個大中城市中有180個城市缺水,其中50多個城市嚴重缺水。以北京為例,全市水資源人均佔有量僅為全國人均佔有量1/6,而其年用水量已達42億m3,每年大約缺水7~10億m3。由於水資源的短缺,近年來城市供水水價持續上漲,小區污水經過適當處理後,用於小區綠化、廁所便器沖洗、洗車和清潔等有很好的社會效益和經濟效益。採用CASS工藝處理小區污水,出水水質穩定,優於一般傳統生物處理工藝,其出水接近《生活雜用水水質標准》(CJ25.1-89),主要項目見表1。通過過濾和消毒處理後,就可以作為中水回用。 表1生活雜用水水質標准 項目便器沖洗、城市道路澆灑洗車、掃除溶解性固體(mg/L)12001000懸浮性固體(mg/L)105色度(度)3030臭無不快感覺無不快感覺pH6.5~9.06.5~9.0BOD(mg/L)1010COD(mg/L)5050氨氮(mg/L)2010總大腸菌群(個/L)33過濾採用膜分離技術,膜分離技術是物質分離技術中的一個單元操作。膜法分離的最大特點是動力為壓力,不伴隨大量熱量變化。因而有節能、可連續操作、便於自動化等優點。為開拓CASS工藝的出水回用領域,開發了一種新型過濾膜(碟片式過濾膜),該膜具有通量大、壽命長、耐污染強度大、易於反沖洗等優點。工程應用表明具有良好的應用前景。由於小區污水中含有致病細菌,消毒後回用可確保使用安全,在膜過濾前進行消毒還有利於對膜的保護。消毒採用次氯酸鈉消毒劑即可達消毒要求。污水處理量在1000m3/d以上時,其污泥處理一般採用濃縮後脫水處理的方法,小規模時由於所產污泥量少,一般濃縮後定期用大糞車外運填埋或作農肥。在多個工程應用基礎上,近期推出的CASS+膜過濾工藝已經應用於裝備指揮技術學院污水處理及回用(2000m3/d)、總參某部污水處理及回用(3000m3/d)和中華人民共和國濟南海關污水處理及回用(100m3/d)等工程。在濟南海關的污水工程設計中,充分利用所提供的地形,既保護了原有的綠化統一規劃,又可以利用處理後的水進行綠化和沖洗車輛,節約了大量的自來水,使用戶受益匪淺。 5結論在水資源日益緊缺的今天,將處理後的水回用於綠化、沖洗車輛和沖洗廁所,其應用前景廣泛。周期循環活性污泥工藝具有出水水質穩定、處理效果好、操作管理運行簡單的特點,實際運行中可以實現中央集中控制和現場手動自動控制,經過多個工程實際應用,該工藝的配套設備潷水器和水下射流曝氣機已經成熟,其出水經過濾和消毒處理後可以達到中水回用的標准,根據實際需求,可以設計成地埋式或半地埋式,因此具有節省佔地的優勢。中水回用勢在必行,周期循環活性污泥+膜過濾工藝為小區污水處理及回用提供了新的工藝和配套設備。 CASS工藝處理小區污水及中水回用
❻ 污水處理中(CASS工藝,日處理量為4W),每天大約可以產生多少剩餘污泥謝謝!!
(二)周期循環延時曝氣活性污泥法(ICEAS)
周期循環延時曝氣活性污泥法(Intermittent Cycle Extended Aeration System,簡稱
圖案2 ICEAS及CASS原理圖
ICEAS)是80年代初在澳大利亞發展起來的。1976年建成世界上第一座ICEAS污水處理廠,隨後在日本、美國、加拿大、澳大利亞等地得到廣泛應用。1986年美國國家環保局正式承認ICEAS工藝屬於革新代用技術(I/A)技術。
ICEAS最大的特點是在SBR池內增加了一個生物選擇器,實現了連續進水(沉澱期、排水期仍連續進水),間歇排水。設置生物選擇器的主要目的是使系統選擇出絮凝性細菌, 其容積約占整個池子的10%。生物選擇器的工藝過程遵循活性污泥的基質積累——再生理論,使活性污泥在選擇器中經歷一個高負荷的吸附階段(基質積累),隨後在主反應區經歷一個較低負荷的基質降解階段,以完成整個基質降解的全過程和污泥再生。
據有關資料介紹,污泥膨脹的直接原因是絲狀菌的過量繁殖。由於絲狀菌比菌膠團的比表面積大,因此,有利於攝取低濃度底物。但一般絲狀菌的比增殖速率比非絲狀菌小,在高底物濃度下菌膠團和絲狀菌都以較大速率降解底物與增殖,但由於膠團細菌比增殖速率較大,其增殖量也較大,從而較絲狀菌占優勢,這樣利用基質作為推動力選擇性地培養菌膠團細菌,使其成為曝氣池中的優勢菌。所以,在ICEAS池進水端增加一個設計合理的生物選擇器,可以有效地抑制絲狀菌的生長和繁殖,克服污泥膨脹,提高系統的運行穩定性。
ICEAS工藝對污染物質的降解是一個時間上的推流過程,集反應、沉澱、排水於一體,是一個好氧—缺氧—厭氧交替運行的過程,並具有一定脫氮除磷效果。
綜上所述,ICEAS工藝流程簡單,具有SBR的優點,實現了連續進水,使其在大型污水處理廠的應用成為現實。該工藝強調延時曝氣,污泥負荷很低(0.04-0.05kgBOD5/kgMLSS.d),因此,使ICEAS工藝投資低(無初沉池、二沉池及污泥迴流設備)的優點在實際工程中無法體現,因此影響了這種工藝的推廣應用
(三)周期循環曝氣活性污泥法(CASS)的提出
1.CASS工藝的提出
CASS(Cyclic Activted Sludge System)與ICEAS在工藝流程上差別不大,只是污泥負荷不同。ICEAS屬周期循環延時曝氣,污泥負荷通常控制在0.04~0.05 kgBOD5/kgMLSS.d以下。 實踐證明,如果以此負荷進行設計,其工程投資與其它生物處理方法相比無任何優勢,而且還要高,先進技術的工藝失去經濟優勢後,應用自然受到很大限制,這正是ICEAS工藝在我國推廣有一定難度的原因所在。本文所述的CASS工藝是結合我們的研究成果和工作實際總結出來的,即在給定的水質條件下達到要求的排放標准,是我們設計參數選擇的依據,實驗研究和應用表明,在負荷為0.1-0.2kgBOD5/kgMLSS.d 或再高一些,CASS的去除效果並不比ICEAS差, 而且有利於形成絮凝性能好的污泥,出水達到排放標准也是可以的(如COD60mg/L, BOD520 mg/L)。當要求更嚴格的排放標准或污水回用時可適當降低負荷。因此,負荷的提高使CASS工藝的工程投資比ICEAS節省。
2.CASS與傳統活性污泥法的比較
建設費用底,省去了初次沉澱池、二次沉澱池及污泥迴流設備,建設費用可節省20%-30%。工藝流程簡潔,污水廠主要構築物為集水池、沉砂池、CASS曝氣池、污泥池,布局緊湊,佔地面積可減少35%。
運轉費用省,由於曝氣是周期性的,池內溶解氧的濃度也是變化的,沉澱階段和排水階段溶解氧降低,重新開始曝氣時,氧濃度梯度大,傳遞效率高,節能效果顯著,運轉費用可節省10—25%。
有機物去除率高,出水水質好,不僅能有效去除污水中有機碳源污染物,而且具有良好的脫氮、除磷功能。
管理簡單,運行可靠,不易發生污泥膨脹,污水處理廠設備種類和數量較少,控制系統簡單,運行安全可靠。
污泥產量低,性質穩定。
3.CASS與SBR的比較
CASS反應池由預反應區和主反應區組成,預反應區控制在缺氧狀態,因此,對難降解有機物的去除效果提高;
CASS進水過程連續,因此進水管道上無電磁閥控制元件,單個池子可獨立運行,而SBR或CAST進水過程是間歇的,應用中一般要2個或2個以上池子交替使用,控制系統復雜程度增加。
CASS每個周期的排水量一般不超過池內總水量的1/3,而SBR則為1/2-3/4,CASS抗沖擊能力較好。
CASS比CAST系統簡單,但脫氮除磷效果不如後者。
(四)CASS與SBR曝氣方式的選擇
由於小區大都是居民居住區,對環境的要求比較高,因此,污水廠建設時應充分考慮噪音擾民問題和污水廠操作人員的工作環境,採用水下曝氣機代替傳統的鼓風機曝氣可有效解決噪音污染。另外,由於CASS工藝獨特的運行方式,採用水下曝氣機可省去復雜的管路及閥門,安裝、維修方便,使用靈活,可根據進出水情況開不同的台數,在保證效果的條件下,達到經濟運行的目的。
(五)CASS與SBR撇水機的選擇
撇水機是CASS工藝的關鍵組成部分,其性能是否穩定可靠直接影響到CASS工藝的正常運行。目前,國內外對撇水機仍在進行研究和開發,按照目前所用的原理撇水機可分為三種類型,即浮球式、旋轉式和虹吸式。撇水機研製的關鍵是解決潷水過程中,堰口、導水軟管和升降控制裝置與水流之間形成的動態平衡,使之可隨排水量的不同調整浮動水堰浸沒的深度,並隨水位均勻地升降,將排水對底層污泥的干擾降低到最低限度,保證出水水質穩定。
我院自主研製開發的撇水機屬絲杠旋轉式,自動撇水裝置主要組成部分是:潷水器、可擾動的軟管、水位控制器、可伸縮推動桿和驅動電機等。其中潷水器又叫自動浮動式水堰,上部為堰口和防止浮渣進入出水的浮筒,下部出水管兼起支撐作用,部分浸沒在水中,通過可伸縮推動桿使方形堰口達到連續均勻地排出反應池中的上清液。實際應用表明,所研製的撇水裝置達到了國內外同類產品的先進水平。具有升降平穩、排水均勻、自動控制、價格低廉等優點,該項研究不僅滿足了工程的需要,而且具有創新,屬專項保密技術之一。
五、處理小區污水主要設計參數
SBR設計參數:污泥負荷0.1~0.15kgBOD5/kgMLSS.d, 污泥齡20~30天
工作周期12小時, 其中, 進水2.5小時(曝氣或不曝氣),反應6小時, 沉澱0.75~1小時, 排水2小時,閑置0.5~0.75小時。出水指標:COD〈50mg/L, BOD5〈20mg/L, SS〈10mg/L
CASS設計參數:污泥負荷0.1~0.2kgBOD5/kgMLSS.d, 污泥齡15~30天
水力停留時間12小時,工作周期4小時,其中曝氣2.5小時, 沉澱0.75小時,排水0.5~0.75小時,出水指標與SBR相近。
六 、污泥處理
污水處理量上千噸時,一般採用濃縮後脫水處理,小規模時一般濃縮後定期用大糞車運至填埋或作農肥。