⑴ 求化學大師賜教,廢水中只含有銅跟鉻離子,如何用化學法測分別含量!鉻離子三價六價未知~
六價鉻的存在形式是鉻酸根(CrO4∧2-)和重鉻酸根(Cr2O7∧2-),兩者分別是橙色和黃色。
因此若溶液顏色為橙色系,則鉻為六價,反之為三價。
若鉻為六價,則准確取樣,加入氫氧化鈉溶液(過量),所得沉澱是氫氧化銅,洗滌乾燥灼燒後為氧化銅,由其質量可以求得銅離子的濃度,
再准確取樣,向裡面加入過量的碘化鉀溶液,然後以澱粉為指示劑,用硫代硫酸鈉的標准溶液滴定樣液,從而得出生成碘單質的量,也就求出了六價鉻的物質的量。
相關反應:
Cr2O7∧2- 6I- 14H =2Cr3 3I2 7H2O
2S2O3∧2- I2=S4O6∧2- 2I-
如果是三價鉻,就可以利用差量法來算,方法有些復雜,希望你不要介意,因為這是在保證精確的情況下的。
先准確分取完全相同的兩份樣液
第一份中加入過量的氫氧化鈉溶液,將沉澱洗滌乾燥,再灼燒得到氧化物,准確稱量其質量,記為m1
第二份中先加入過量的鐵粉,反應後過濾,再加入過量的氫氧化鈉溶液,將沉澱洗滌乾燥,再灼燒成氧化物,准確稱量其質量,記為m2
有上述操作可知,m1為xmolCr2O3和ymolCuO
m2為xmolCr2O3和y/2molFe2O3(設樣液中三價鉻為xmol,銅離子為ymol)。
千萬不要直接向裡面加入氧化劑,因為氧化劑過量就無法測出三價鉻的含量。
如果仍然有問題,可以向我追問,或點擊我的名字向我提問,樂意為你回答問題!
希望對你有所幫助!
望採納!
⑵ 哪些企業廢水中含有六價鉻
廢水中含有六價鉻的企業有電鍍行業、皮革行業、化工行業。
1、電鍍行業:電鍍過程中會釋放大量廢水,其中含有大量的六價鉻離子。
2、皮革行業:製革流程中使用的鞣劑、染料等廢水中含有一定量的六價鉻。
3、化工行業:化工生產中產生的廢水中也會含有六價鉻。
⑶ 電鍍含鉻廢水處理有幾個方法
電鍍含鉻廢水的鉻的存在形式有Cr6+和Cr3+兩種,其中以Cr6+的毒性最大。含鉻廢水的處理方法較多,常用的有電解法、化學法、離子交換法等。
工具/原料
亞硫酸鹽
硫酸亞鐵
方法/步驟
電解法
電解還原處理含鉻廢水是利用鐵板作陽極,在電解過程中鐵溶解生成亞鐵離子,在酸性條件下,亞鐵離子將六價鉻離子還原成三價鉻離子。同時由於陰極上析出氫氣,使廢水pH逐漸上升,最後呈中性,此時Cr3+、Fe3+都以氫氧化物沉澱析出,達到廢水凈化的目的。
電解還原處理含鉻廢水的工藝參數:
① 含鉻廢水Cr6+濃度為50~200mg/L;
② 廢水pH≤6.5,一般含鉻25~150mg/L之間的廢水,pH值為3.5~6.5,故不需調節pH值;
③ 溫度影響不大,一般處理後水溫約上升1~2℃。
電解還原法具有體積小、佔地少、耗電低、管理方便、效果好等特點。缺點是鐵板耗量較多,污泥中混有大量的氫氧化鐵,利用價值低,需妥善處理。
化學法
電鍍廢水中的六價鉻主要以CrO42-和Cr2O72--兩種形式存在,在酸性條件下,六價鉻主要以Cr2O72形式存在,鹼性條件下則以CrO42-形式存在。六價鉻的還原在酸性條件下反應較快,一般要求pH<4,通常控制pH2.5~3。常用的還原劑有:焦亞硫酸鈉、亞硫酸鈉、亞硫酸氫鈉、連二亞硫酸鈉、硫代硫酸鈉、硫酸亞鐵、二氧化硫、水合肼、鐵屑鐵粉等。還原後Cr3+以Cr(OH)3沉澱的最佳pH為7~9,所以鉻還原以後的廢水應進行中和。
(1)亞硫酸鹽還原法
目前電鍍廠含鉻廢水化學還原處理常用亞硫酸氫鈉或亞硫酸鈉作為還原劑,有時也用焦磷酸鈉,六價鉻與還原劑亞硫酸氫鈉發生反應:
4H2CrO4+6NaHSO3+3H2SO4=2Cr2(SO4)3+3Na2SO4+10H2O
2H2CrO4+3Na2SO3+3H2SO4= Cr2(SO4)3+3Na2SO4+5H2O
還原後用NaOH中和至pH=7~8,使Cr3+生成Cr(OH)3沉澱。
採用亞硫酸鹽還原法的工藝參數控制如下:
① 廢水中六價鉻濃度一般控制在100~1000mg/L;
② 廢水pH為2.5~3
③ 還原劑的理論用量為(重量比):亞硫酸氫鈉∶六價鉻=4∶1
焦亞硫酸鈉∶六價鉻=3∶1
亞硫酸鈉∶六價鉻=4∶1
投料比不應過大,否則既浪費葯劑,也可能生成[Cr2(OH)2SO3]2-而沉澱不下來;
④ 還原反應時間約為30min;
⑤ 氫氧化鉻沉澱pH控制在7~8,沉澱劑可用石灰、碳酸鈉或氫氧化鈉,可根據實際情況選用。
(2)硫酸亞鐵還原法
硫酸亞鐵還原法處理含鉻廢水是一種成熟的較老的處理方法。由於葯劑來源容易,若使用鋼鐵酸洗廢液的硫酸亞鐵時,成本較低,除鉻效果也很好。硫酸亞鐵中主要是亞鐵離子起還原作用,在酸性條件下(pH=2~3),其還原反應為:
H2Cr2O7+6FeSO4+6H2SO4=Cr2(SO4)3+3Fe 2(SO4)3+7H2O
用硫酸亞鐵還原六價鉻,最終廢水中同時含有Cr3+和Fe3+,所以中和沉澱時Cr3+和Fe3+一起沉澱,所得到的污泥是鉻與鐵氫氧化物的混合污泥,產生的污泥量大,且沒有回收價值,這是本法的最大缺點。其主要工藝參數為:
① 廢水的六價鉻濃度為50~100mg/L;
② 還原時廢水的pH=1~3;
③ 還原劑用量一般控制在Cr6+∶ FeSO4·7H2O=1∶25~30
④ 反應時間不小於30min
⑤ 中和沉澱的pH控制在7~9
(3)鐵氧體法
鐵氧體法實質上是硫酸亞鐵法的演變與發展,其特點是投加亞鐵鹽還原六價鉻,調節pH沉澱後,需要加熱至60~80℃,並較長時間的曝氣充氧。形成的鉻鐵氧體沉澱屬尖晶石結構,Cr3+占據部分Fe3+位置,其他二價金屬陽離子占據了部分Fe2+的位置,即進入鐵氧體的晶格中。進入晶格的三價鉻離子極為穩定,在自然條件或酸性和鹼性條件都不為水所浸出,因而不會造成二次污染,從而便於污泥的處置。鐵氧體法的工藝條件為:
① 硫酸亞鐵投加量FeSO4·7H2O∶CrO3=16∶1;
② 加NaOH沉澱pH=8~9;
③ 加熱溫度控制在60~80℃之內,不宜超過80℃;
④ 壓縮空氣曝氣,既充氧又攪拌。
(4)化學還原氣浮分離法
氣浮法處理含鉻廢水實際是化學還原法在固液分離方法上的發展,硫酸亞鐵還原氣浮法主要是利用Fe(OH)3凝膠體的強吸附能力,吸附廢水中包括Cr(OH)3在內的其它氫氧化物沉澱,形成共絮體,這種共絮體能有效地被氣泡拈著並浮上去除。氣浮法固液分離技術適應性強,可處理鍍鉻廢水,也可處理含鉻鈍化廢水以及混合廢水,處理量大。不僅可去除重金屬氫氧化物,也可以同時去除其他懸浮物、乳化油、表面活性劑等,加上整個過程可以連續處理,管理較為方便,可以操作自動化。
(5)水合肼還原法
水合肼N2H4·H2O在中性或微鹼性條件下,能迅速地還原六價鉻並生成氫氧化鉻沉澱。
4CrO3+3N2H4=4Cr(OH)3+3N2
這種方法可以處理鍍鉻生產線第二回收槽帶出的含鉻廢水,也可以處理鉻酸鹽鈍化工藝中所產生的含鉻漂洗水。水合肼還原法產生的污泥量少,含鉻量高,便於回收利用。特別在中性或微鹼性條件處理含鉻廢水,不會引入中性鹽,顯然改善了排放廢水的水質。水合肼方法處理含鉻鈍化廢水時,Zn、Cd、Fe、Ni等重金屬也可同時去除。
3
離子交換法
離子交換法是利用一種高分子合成樹脂進行離子交換的方法。應用離子交換法處理含鉻廢水是使用離子交換樹脂對廢水中六價鉻進行選擇性吸附,使六價鉻與水分離,然後再用試劑將六價鉻洗脫下來,進行必要的凈化,富集濃縮後回收利用。用這種方法可以回收六價鉻、回用部分水。但由於鈍化含鉻廢水、地面沖洗含鉻廢水等,除了含六價鉻外,還含大量的其他重金屬陽離子以及多種酸根陰離子。組分比鍍鉻漂洗水復雜得多。因而離子交換法處理鍍鉻廢水比較容易,而處理其他含鉻廢水比較困難,雖然該方法在技術上有獨特之處,在資源回收和閉路循環方面發揮了主導作用,但其投資費用大、操作管理復雜,一般的中小型企業難於適應。
以上就是幾種方法的詳細介紹,如需了解更多信息至http://www.weidian65.com/望採納。
⑷ 什麼是鉻污染,
鉻污染源自自然界的岩石風化和工業排放,其中六價鉻主要來源於工業廢水,如鉻酸根離子。環境中的鉻價態多樣,三價鉻穩定於沉積物中,六價鉻在厭氧條件下可轉化為三價鉻。測定水質標准時,通常考慮總鉻含量而非六價鉻,因為三價鉻也有害且存在互相轉化。鉻對人體有毒性,六價鉻尤為危險,可致突變和癌症。鉻渣處理是環境問題之一。
鉻是一種重要的工業元素,金屬加工、電鍍和製革等行業廣泛應用。工業排放的廢水和廢氣是其人為污染來源,六價鉻化合物是主要形式。鉻對生物體雖有微量需求,但過量攝入對人和動植物有害。三價鉻和六價鉻都能致死水生生物,三價鉻對魚類的影響尤其顯著。土壤中鉻含量過高會干擾硝化作用並導致植物吸收。鉻對農作物生長的影響明顯,低濃度刺激生長,高濃度則抑制甚至致死。此外,含鉻廢水會降低廢水處理效果。
⑸ 工業含鉻廢水的處理方法 工業含鉻廢水如何處理
1、硫酸亞鐵還原法
我們可以使用硫酸亞鐵還原法來處理含鉻廢水,葯劑配製方便,成本較低,硫酸亞鐵中主要是亞鐵離子還原六價鉻,還原後廢水中含有Cr3+和Fe3,沉澱後所得污泥是鉻與鐵氫氧化物的混合污泥,但是此方法產生的污泥量大,沒有回收價值。
2、電解法
電解法可以使廢水中的鉻通過電解過程在陰陽極發生氧化還原反應,使有害物質轉化為無害物質。電解法除鉻是用鐵來做陰陽極,在酸性條件下,亞鐵離子將六價鉻離子還原成三價鉻離子,陰極產生氫氣,達到廢水凈化的目的。電解法佔地面積小,方便控制管理,唯一不足就是鐵板消耗量較多,污泥利用價值低。
3、離子交換法
離子交換法來處理含鉻廢水主要是利用離子交換樹脂來對廢水中的六價鉻進行選擇性吸附,六價鉻和水分離,再使用試劑將六價鉻洗脫襲來,進行凈化。此方法投資費用大,操作管理負責,一般我們都不使用此方法。