導航:首頁 > 污水知識 > 污水站的QC怎麼寫

污水站的QC怎麼寫

發布時間:2024-11-08 21:53:20

Ⅰ AO工藝,氧化溝工藝,SBR工藝的優缺點對比

SBR 工藝和氧化溝工藝都比較適合於中小型污水廠,如果設計管理的好,都可以取得比較好的除磷脫氮效果。但是這兩種工藝又各有優缺點,分別適用於不同的情況,在選定方案時需要仔細分析。

從基建投資看,SBR 工藝是合建式,一般情況下征地費和土建費較氧化溝低,而設備費較氧化溝高,總造價的高低則要視具體情況決定。

1) SBR 工藝由於採用合建式,不需要設置二沉地,同時由於採用微孔曝氣,可以採用的水深一般為4~6m,比一般氧化溝的水深(3 ~4m) 要深,因此在同樣的負荷條件下,SBR 工藝的佔地面積小,如果污水處理廠所在地的征地費用比較高,對SBR 工藝有利。

2) 進水BOD濃度高,反應容積與沉澱容積的比值高,對氧化溝有利;BOD濃度低,反應容積與沉澱容積的比值低,對SBR 有利。

3) SBR 工藝中一個周期的沉澱時間是由活性污泥界面的沉速、MLSS濃度、水溫等因素確定的,渾水時間是由潷水器的長度、上清液的潷除速率等因素決定的,對於一個固定的反應系統,沉澱時間和潷水時間的和基本上是固定的,一般都不應小於2 小時,因此每個周期的時間短,反應時間所佔的比例就低,反應池的容積利用系數降低。對於污泥穩定要求不高的污水廠,選擇 SBR 工藝不利。( 合建式氧化溝工藝也有這個缺點) 。

4) SBR 工藝是靜態沉澱,氧化溝工藝是動態沉澱,因而SBR 的沉澱效率更高,出水水質更好。

5) SBR 工藝和交替式氧化溝需要頻繁地開停進水閥門,曝氣設備,潷水器等,因此對自控設備的要求比較高,目前某些國產設備的質量尚不過關,如果考慮進口,自控系統所佔的投資比例將增加而且將增大維修費用。

6) 在一些水量非常小的小城鎮,夜間幾乎沒有污水產生,這時候SBR 工藝和交替式氧化溝工藝有優越性,曝氣設備可以白天運轉,夜間停止運行。

7) 從運營費用看,SBR 工藝通常用鼓風曝氣,氧化溝工藝通常用機械曝氣。一般說來,在供氧量相同的情況下,鼓風曝氣比機械曝氣省電;第二方面,SBR 工藝是合建式,不用污泥迴流( 有的少量迴流) ,氧化溝工藝是分建式要大量迴流,電耗較大;第三方面,SBR 工藝是變水位運行,增大了進水提升泵站的揚程。綜合考慮,通常氧化溝工藝的電耗要比 SBR工藝大些,運營費要高些。

8) 在寒冷的氣候條件下,因為表面曝氣器會造成表面冷卻或者結冰,降低污水的溫度,而污水的溫度降低對生化反應尤其是硝化反應的影響較大,所以在寒冷地區採用氧化溝工藝需要採取一些特殊措施,如將氧化溝加蓋,而這些措施都使氧化溝工藝在和其它工藝競爭中處於不利的地位。
9)AO工藝法也叫厭氧好氧工藝法,A(Anacrobic)是厭氧段,用與脫氮除磷;O(Oxic)是好氧段,用於除水中的有機物。
A/O法脫氮工藝的特點:
(a) 流程簡單,勿需外加碳源與後曝氣池,以原污水為碳源,建設和運行費用較低;
(b) 反硝化在前,硝化在後,設內循環,以原污水中的有機底物作為碳源,效果好,反硝化反應充分;
(c) 曝氣池在後,使反硝化殘留物得以進一步去除,提高了處理水水質;
(d) A段攪拌,只起使污泥懸浮,而避免DO的增加。O段的前段採用強曝氣,後段減少氣量,使內循環液的DO含量降低,以保證A段的缺氧狀態。
A/O法存在的問題:
1.由於沒有獨立的污泥迴流系統,從而不能培養出具有獨特功能的污泥,難降解物質的降解率較低;
2、若要提高脫氮效率,必須加大內循環比,因而加大運行費用。從外,內循環液來自曝氣池,含有一定的DO,使A段難以保持理想的缺氧狀態,影響反硝化效果,脫氮率很難達到90%

Ⅱ 海爾EC6002一QC怎麼排污

海爾EC6002一QC排污方法:
1、排污口一般設置在熱水器進出水口的旁邊,有一些熱水器會在排污口處標有文字提示。通常排污口不會被使用,只有在需要清潔時,才會用到排污口;
2、其實排污口的原理很簡單,撬開排污口,讓內膽里的水自然流出,能夠帶走一部分沉積的雜質和水垢。不過對附著在內膽和鎂棒上的水垢基本上沒有任何效果;
3、通過排污口清潔熱水器,首先要斷電,關掉進水閥,待膽內熱水冷卻後,打開排污口,讓污水流出,待內膽中污水流光後,再打開進水閥,使自來水流入內膽再從排污口流出;
4、通過排污口清潔電熱水器,最好先將電熱水器拆卸下來放在地上,以免污水四濺,排污閥比較靠里,擰開比較麻煩;

Ⅲ 污泥濃縮池 體積和停留時間怎麼確定啊

你打算多久污泥外運一次,用天數乘以12.12不就可以了嗎?
(1)、進泥含水率:當為初次污泥時,其含水率一般為95%-97%;當為剩餘活性污泥時,其含水率一般為99.2%-99.6%。
(2)、污泥固體負荷:當為初次污泥時,污泥固體負荷宜採用80-120Kg/(m2.d);當為剩餘法泥時,污泥固體負荷宜採用30-60Kg/(m2.d)。
(3)、濃縮後污泥含水率:由曝氣池後二次沉澱池進入污泥濃縮池的污泥含水率,當採用99.2%-99.6%時,濃縮後污泥含水率宜為97%-98%。
(4)、濃縮時間不宜小於12h;但也不要超過24h。
(5)、有效水深一般宜為4m,最低不小於3m。
(6)、污泥室容積和排泥時間,應根據排泥方法和兩次排泥間時間而定,當採用定期排泥時,兩次排泥間一般可採用8h。
(7)、集泥設施:輻流式污泥濃縮池的集泥裝置,當採用吸泥機時,池底坡度可採用0.003;當採用刮泥機時,不宜小於0.01。不設刮泥設備時,池底一般設有泥斗。其泥斗與水平面的傾角,應不小於50度。刮泥機的回轉速度為0.75-4r/h,吸泥機的回轉速度為1r/h,其外緣線速度一般宜為1-2m/min。同時在刮泥機上可安設柵條,以便提高濃縮效果,在水面設除浮渣裝置。
(8)、構造及附屬設施
一般採用水密性鋼肋混凝土建造。設污泥投入管、排泥管、排上清液管,排泥管最小管徑採用150mm,一般採用鑄鐵管。
(9)、豎流式濃縮池:當濃縮池較小時,可採用豎流式濃縮池,一般不設刮泥機,污泥室的截錐體斜壁與水平面所形成的角度,應不小於50°,中心管按污泥流量計算。沉澱區按濃縮分離出來的污水流量進行設計。
(10)、上清液:濃縮池的上清液,應重新回到初沉池前進行處理。其數量和有機物含量參與全廠的物料平衡計算。
(11)、二次污染:污泥濃縮池一般均散發臭氣,必須時應考慮防臭或脫臭措施。臭氣控制可以從以下三方面著手,即封閉、吸收和掩撇。所謂封閉,是指用蓋子或其它設備封住臭氣發生源;所謂吸收,是指用化學葯劑來氧化或凈化臭氣;所謂掩蔽,是指採用掩蔽劑使臭氣暫時不向外擴散。

重力濃縮池設計參數

污泥種類

進泥濃度(%)

出泥濃度(%)

水力負荷
[m3/(m2.d)]

固體負荷[kg/(m2.d)]

固體捕捉率(%)

溢流TSS(mg/l)

初次污泥

1.0-7.0

5.0-10.0

24-33

90-144

85-98

300-1000

滴濾池生物膜

1.0-4.0

2.0-6.0

2.0-6.0

35-50

80-92

200-1000

剩餘活性污泥

0.2-1.5

2.0-4.0

2.0-4.0

10-35

60-85

200-1000

初次污泥與剩餘活性污泥的混合污泥

0.5-2.0

4.0-6.0

4.0-10.0

25-80

85-92

300-800

重力污泥濃縮池的計算公式

名 稱

公 式

符 號 說 明

1、濃縮池總面積

A=QC/M

Q--污泥量(m3/d)
C--污泥固體濃度(g/l)
M--濃縮池污泥固體量(kg/m2.d)

2、單池面積

A1=A/n

N--濃縮池數量

3、濃縮池直徑

D=(4A1/π)0.5

4、濃縮池工作部分高度

H1=TQ/24A

T--設計濃縮時間

5、濃縮池總高度

H=h1+h2+h3

H2--超高
H3--緩沖層高度

6、濃縮後污泥體積

V2=Q(1--P1)/(1--P)

P1--進泥濃度
P2--出泥濃度

加壓過濾
加壓過濾(壓濾)一般是間歇操作,初投資高,脫水效率較低。但脫水效果好,一般泥餅含水率在65%以下。整個壓濾機是密封的,過濾壓力一般為0.392-0.49Mpa以上。目前常用的加壓過濾設備有板框壓濾機和廂式壓濾機。
(1)、用壓濾機為城市污泥脫水時,過濾能力一般為2-10kg干泥/m2.h;當為城市消化污泥時,投加三氯化鐵量為4%-7%,氧化鈣為11%-22.5%,過濾能力一般為24kg干泥/m2.h,過濾周期一般為1.5-4h。
(2)、壓濾機設置台數應不小於2台。
(3)、污泥壓入過濾機一般有兩種方式:一種是高壓污泥泵直接壓入;另一種是壓縮空氣,通過污泥罐將污泥壓入過濾機,常用的高壓污泥泵有離心式或柱塞式。當採用柱塞式污泥泵時,應設減壓閥及旁通迴流管。每台過濾機應單獨配備一台污泥泵。
(4)、污泥壓濾後需用壓縮空氣來剝離泥餅,所需的空氣量按濾室容積每平方米需氣2m3/m3.min計算,壓力為0.1-0.3Mpa。
(5)、當用轉送帶運送污泥時,應考慮卸落時的沖力,並應附有破碎泥餅的鋼絲格網,以防泥餅塑化。

斜板沉澱池
斜板沉澱池是根據「淺層沉澱」理論,在沉澱池中加設斜板或蜂窩斜管,以提高沉澱效率的一種新型沉澱池。它具有沉澱效果高、停留時間短、佔地少等優點。斜板(管)沉澱池應用於城市污水的初次沉澱中,其處理效果穩定,維護工作量也不大;斜板耐沖擊負荷的能力較差。斜板(管)設備在一定條件下,有孳長藻類等問題,給維護管理工作帶來一定困難。
按水流與污泥的相對運動方向,斜板(管)沉澱池可分為異向流、同向流和側向流3種形式。在城市污水處理中主要採用升流式異向斜板(管)沉澱池。
設計數據
(1)、在需要挖掘原有沉澱池潛力,或需要壓縮沉澱池佔地等技術經濟要求下,可採用斜板沉澱池。
(2)、升流式異向流斜板(管)沉澱池的表面負荷,一般可比普通沉澱池的設計表面負荷提高一倍左右。對於二次沉澱池,應以固體負荷核算。
(3)、斜板垂直凈距一般採用80-120m,斜管孔徑一般採用50-80mm。
(4)、斜板(管)斜長一般採用1-1.2m。
(5)、斜板(管)傾角一般採用60°。
(6)、斜板(管)區底部緩沖層高度,一般採用0.5-1.0m。
(7)、斜板(管)區上部水深,一般採用0.5-1.0m。
(8)、在池壁與斜板的間隙處應裝設阻流板,以防止水流短路。斜板上緣宜向池子進水端傾斜安裝。
(9)、進水方式一般採用穿孔牆整流布水,出水方式一般採用多槽出水,在池面上增設幾條平行的出水堰和集水槽,以改善出水水質,加大出水量。
(10)、斜板(管)沉澱池一般採用重力排泥。每日排泥次數至少1-2次,或連續排泥。
(11)、池內停留時間:初次沉澱池不超過30min,二次沉澱池不超過60min。
(12)、斜板(管)沉澱池應設斜板(管)沉澱池應設斜板(管)沖洗設施。
計算公式

名稱
公式
稱號說明

1、池子水面面積
F=Qmax/mq×0.91(m2)
Qmax---最大設計流量

n---池數(個)

q---設計表面負荷[m3/(m2.h)]

0.91---斜板區面積利用系數

2、池子平面尺寸
圓型池直徑:

D=√4F/π(m)

方形池邊長:

a=F(m)

3、池內停留時間
T=(h2+h3)60/q(min)

H2---斜板區上部水深

H3---斜板高度

4、污泥部分所需的容積
(1)V=Qmax(C1-(2)24T100/K2y(100-p0)n
S---每人每天污泥量[L/(人.d)],一般採用0.3-0.8

N---設計人口數(人)

t---污泥室儲泥周期(d)

C1---進水懸浮物濃度

C2---出水懸浮物濃度

Kz---生活污水量總變化系數

y---污泥容重(t/m3)

po---污泥含水率(%)

5、污泥斗容積
(1)圓錐體:

V1=πh5/3(R2+Rr1+r12)(m3)

(2)方錐體:

V1=h5/3(a2+aa1+a12)(m3)
H5---污泥斗高度

R---污泥鬥上部半徑(m)

R1---污泥斗下部半徑(m)

A1---污泥斗下部邊長

6、沉澱池總高度
H=h1+h2+h3+h4+h5(m)
H1---超高(m)

H4---斜板(管)區底部緩沖層高度(m)

註:當斜板(管)沉澱池為矩形池時,其計算方法與方形池類同。

污水管道一般規定

項目
一般規定

1、充滿度

2、最小管徑

3、流速

4、最小管徑
(1)、廠區內的工業廢水管、生活污水管、街坊內的生活污水管200mm

(2)、城市街道下的生活污水管300mm

5、覆土
(1)、荷載要求:最小覆土在車道下一般不小於0.7m

(2)、冰凍要求;

1)、無保溫措施時,管內底可埋設在冰凍線以上0.15m

2)、有保溫措施或水溫較高的管道,可根據當地經驗埋得淺些,以上兩種情況均不宜小於0.7m

(3)、最大覆土:不宜大於6m

(4)、理想覆土:在滿足各方面要求的前提下,爭取維持在1-2m

6、連接
(1)、管道在檢查井內連接,一般採用管頂平接

(2)、不同直徑也可採用設計水面平接

(3)、在任何情況下進水管底不得低於出水管底

7、坡度驟變的處理
(1)、管道坡度驟然變陡,可由大管徑變小管徑

當D=200-300mm時,只能按生產規格減小一級

當D=400mm時,應根據水力計算確定,但減小不得超過二級

(2)、管道坡度驟然變緩,應逐漸過渡

8、小管核算
(1)、當有公共建築物位於管線始端時,應加入該集中流量進行滿復核

(2)、流量很小而地形又較平坦的上游支線,可採用非計算管段,採用最小管徑,按最小坡度控制

9、沖洗
(1)、在流速小於0.4m/s的上游管段,可考慮設沖洗井

(2)、每座井沖洗的長度一般為250m

10、溢流
污水管道在進入泵站或處理廠前,當條件允許時,可設事故溢流口,但必須取得當地有關部門的同意

11、通風
在充滿過高的管段、跌水井、大濃度污水接入的井位以及污水管線以上每隔500m左右的井位宜設通風管

12、計算
在適當管段中,宜設置觀測和計量構築物

Ⅳ 污水中的F/M是怎麼回事計算 詳細點 謝謝 新手

F是基質的總投加抄量,說白了就是污水中每日COD投加的質量,F=QC,Q是處理量,C是進水COD濃度。
M是系統中微生物的總量,就是池子內的污泥總量,M=XV,X為污泥濃度,V為池子體積。
理解了上面兩點,F/M的意思就是單位時間內單位質量污泥能後承受的COD質量,即污泥負荷,單位kgCOD/(kgMLSS·d)。
還不明白的話建議多看看書,這是污水處理裡面的基本概念。

Ⅳ 污水處理站化驗室QC小組如何活動

QC小組活動?請問您是在日企嗎?我覺得實驗室的QC活動可以定的題目嘛,首先的明確你們實驗室存在什麼問題,比如實驗結果與在線監測有誤差啊,或者有可以遞減實驗費用的空間啊,或者在實驗時間的方面可以採用一些新的方法或者設備啊,這些題目都可以作為QC題目。以上意見供參考。

Ⅵ 汽修廠的廢水怎樣處理

汽修廠的廢水怎樣處理

汽修廠環境保護設施:
1、含油廢水處理裝置;
2、降噪設施;
3、有組織排放粉塵的處理裝置
如果您覺得能幫到您,請採納

澱粉廠的廢水怎樣處理

目前,國內外經常採用的澱粉廢水處理工藝有如下幾種。
(1)厭氧-好氧串聯工藝
厭氧部分一般採用UASB、厭氧濾池、厭氧塘、縱向折流套筒式厭氧污泥床(VBASB)處理工藝,好氧部分可採用生物接觸氧化、迴圈式活性污泥法等工藝,厭氧前面採用調節池預曝氣、沉澱等預處理,好氧後面一般接氣浮、吸附、過濾等後處理,以保證出水達標。
(2)兩段好氧串聯工藝
該工藝可為生物接觸氧化與氧化塘串聯,也可採用酵母菌-焦炭固定床生物膜兩段好氣處理工藝。
(3)化學絮凝-活性炭吸附

汽修固廢廢漆怎樣處理

辦理危險廢物收集許可證,然後將收集的廢機油定期轉移至有資質的單位處理。
汽車維修行業會產生的塗料危險廢物主要是噴漆工藝產生的廢油漆渣、、廢油漆、吸附棉、天那水、活性炭以及沾染了油漆或者機油的油漆罐、機油桶、機油濾清器、抹布手套等。

處理廢水的污泥怎樣處理?

處理廢水後污泥的處理處置方式主要有:

  1. 衛生填埋、

  2. 污泥農用、

  3. 污泥干化和熱處理、

  4. 污泥焚燒及海洋傾倒.

由於污泥焚燒具有使剩餘污泥減量化到最小,污泥處理速度快,可就地焚燒及可以回收能量用於發電和供熱等優點而被廣泛採用。

國內污水處理事業的發展,污水廠總處理水量和處理程度將不斷擴大和提高,產生的污泥量也日益增加,目前在國內一般污水廠中其基建和執行費用約占總基建和執行費用的20%~50%。污水污泥中除了含有大量的有機物和豐富的氮、磷等營養物質,還存在重金屬、致病菌和寄生蟲等有毒有害成分。為防止污泥造成的二次污染及保證污水處理廠的正常執行和處理效果,污水處理後的污泥必須及時無害化處理。

含砷廢水怎樣處理?

處理含砷廢水,目前國內外主要有中和沉澱法、絮凝沉澱法、鐵氧體法、硫化物沉澱法等,適用於高濃度含砷廢水,生成的污泥易造成二次污染。在化學法方面的研究已經比較成熟,很多人曾在這方面做了深入的研究。
1 化學法處理含砷廢水
中和沉澱法作為工程上應用較廣的一種方法,很多人在這方面作了深入的研究,機理主要是往廢水中新增鹼(一般是氫氧化鈣)提高其pH,這時可生成亞砷酸鈣、砷酸鈣和氟化鈣沉澱。這種方法能除去大部分砷和氟,且方法簡單,但泥渣沉澱緩慢,難以將廢水凈化到符合排放標准。
絮凝共沉澱法,這是目前處理含砷廢水用得最多的方法。它是藉助加入(或廢水中原有)Fe3+、Fe2+、Al3+和Mg2+等離子,並用鹼(一般是氫氧化鈣)調到適當pH,使其形成氫氧化物膠體吸附並與廢水中的砷反應,生成難溶鹽沉澱而將其除去。其具體方法有,石灰-鋁鹽法、石灰-高鐵法、石灰-亞鐵法等。
鐵氧體法,在國外,自70年代起已有較多報道,工藝過程是在含砷廢水中加入一定數量的硫酸亞鐵,然後加鹼調pH至8.5-9.0,反應溫度60-70℃,鼓風氧化20-30分鍾,可生成咖啡色的磁性鐵氧體渣。Nakazawa Hiroshi 等研究指出,在熱的含砷廢水中加鐵鹽(FeSO4或Fe2(SO4)3),在一定pH下,恆溫加熱1 h。用這種沉澱法比普通沉澱法效果更好。特別是利用磁鐵礦中Fe3+鹽處理廢水中As(III)、As(V),在溫度90℃,不僅效果很好,而且所需要的Fe3+濃度也降到小於0.05mg/L。趙宗升曾從化學熱力學和鐵砷沉澱物的紅外光譜兩個方面探討了氧化鐵砷體系沉澱除砷的機理,發現在低pH值條件下,廢水中的砷酸根離子與鐵離子形成溶解積很小的FeAsO4,並與過量的鐵離子形成的FeOOH羥基氧化鐵生成吸附沉澱物,使砷得到去除。
馬偉等報道,採用硫化法與磁場協同處理含砷廢水,提高了硫化渣的絮凝沉降速度和過濾速度,並提高了硫化劑的利用率。研究發現經磁場處理後,溶液的電導率增加,電勢降低,磁化處理使水的結構發生了變化,改變了水的滲透效果。國外曾有人提出在高度厭氧的條件下,在硫化物沉澱劑的作用下生成難溶、穩定的硫化砷,從而除去砷。
化學沉澱法作為含砷廢水的一種主要處理方法,工程化比較普遍,但並不是採用單一的處理方式,而是幾種處理方式的綜合處理,如鈣鹽與鐵鹽相結合,鐵鹽與鋁鹽相結合等等。這種綜合處理能提高砷的去除率。但由於化學法普遍要加入大量的化學葯劑,並成為沉澱物的形式沉澱出來。這就決定了化學法處理後會存在大量的二次污染,如大量廢渣的產生,而這些廢渣的處理目前尚無較好的處理處置方法,所以對其在工程上的應用和以後的可持續發展都存在巨大的負面作用。
2 物化法處理含砷廢水
物化法一般都是採用離子交換 、吸附、萃取、反滲透等方法除去廢液中的砷。物化法大都是些近年來發展起來的較新方法,實用的尚不多見,但是有眾多學者在這方面做了深入的研究,並取得了顯著的成果。
陳紅等曾利用MnO2對含As(III)廢水進行了吸附實驗,結果表明,MnO2對As(III)有著較強的吸附能力,其飽和吸附量為44.06mg/g(δ-MnO2)和17.9 mg/g(ε-MnO2),陰離子的存在使MnO2吸附量有所下降,一些陽離子(如Ga3+、In3+)可增加其吸附量,吸附後的MnO2經解吸後可重復使用。
胡天覺等報道,合成制備了一種對As(III)離子高效選擇性吸附的螯合離子交換樹脂,用該離子交換柱脫砷:含As(III)5 g/L的溶液脫砷率高於99.99%,脫砷溶液中砷含量完全達標,而且離子交換柱用2mol/L的氫氧化鈉(含5% 硫氫化鈉)作洗脫液洗滌,可完全回收As(III)並使樹脂再生迴圈利用。
劉瑞霞等也曾制備了一種新型離子交換纖維,該離子交換纖維對砷酸根離子具有較高的吸附容量和較快的吸附速度。實驗表明該纖維具有較好的動態吸附特性,30mL 0.5mol/L氫氧化鈉溶液可定量將96.0 mg/g吸附量的砷從纖維上洗脫。
另外,還有不少人作了用鋼渣、選礦尾渣、高爐冶煉礦渣等廢渣處理含砷廢水的研究,取得了不錯的成果。但由於物化法只能處理濃度較低,處理量不大,組成單純且有較高回收價值的廢水,而工業廢水的成分較復雜,所以物化法的工程化程度較低。
3 微生物法處理含砷廢水
與傳統物理化學方法相比,用微生物法處理含砷廢水具有經濟、高效且無害化等優點,已成為公認最具發展前途的方法。
3.1 活性污泥
國內外諸多研究表明,活性污泥ECP(胞外多聚物)能大量吸附溶液中的金屬離子,尤其是重金屬離子,他們與ECP的絡合更為穩定。關於吸附機制,在ECP的復雜成分中吸附重金屬離子的似乎是糖類。Brown和Lester(1979)指出ECP中的中性糖和陰離子多糖有著吸附不同金屬離子的結合點位,不同價態或不同電荷的金屬離子可以在不同的點位與 ECP結合,如中性糖的羥基、陰離子多聚物的羥基都可能是金屬的結合位。Kasan、Lester、Modak和Natarajam等認為:活性污泥對重金屬離子的吸附有兩種機制即表面吸附和胞內吸收;表面吸附是指活性污泥微生物的胞外多聚物(甲殼素、殼聚糖等)含有配位基團—OH,—COOH,—NH2,PO43-和—HS等,他們與金屬離子進行沉澱、絡合、離子交換和吸附,其特點是快速、可逆和不需要外加能量,與代謝無關;胞外吸收通過金屬離子和胞內的透膜酶、水解酶相結合而實現,速度較慢需要能量,而且與代謝有關。
此外,Ralinske指出:好氧生物能大量富集各種重金屬離子,這些離子積累於細胞外多聚物中,並在厭氧條件下釋放回液相中。這就有利於我們在二沉池中分離和沉降重金屬離子。
在活性污泥法處理含砷廢水的實驗中,存在許多影響因素,主要影響因素如下:
(1)砷的濃度及價態
不同價態的砷對活性污泥的毒性不同。實驗表明,As(III)對脫氫酶的毒性比As(V)平均大53倍。As(III)對蛋白酶活性的毒性約為As(V)的75倍。還有,As(III)對活性污泥脲酶活性的毒害作用是As(V)的35倍。所以處理含砷廢水時有必要將As(III)氧化成As(V)。實驗還表明,活性污泥對低濃度砷的去除率高於對高濃度砷的去除率,這是由於污泥的吸附能力有限所造成的。此外,重金屬離子濃度小於5mg·L-1時,活性污泥法對污水中有機物的處理效果不受重金屬影響,當重金屬離子濃度大於30mg·L-1時,活性污泥法污水中有機物的處理效果則大大受到影響。
(2)有機負荷
有機負荷對活性污泥去除五價砷也有較大的影響,有機負荷高,去除率也高。主要有兩方面的原因:一是污水中的有機物本身可和五價砷相結合,降低了污水中砷的濃度;二是有機物濃度高有利微生物生長繁殖,這進一步提高活性污泥對五價砷的去除率。此外,有機負荷高還可以防止污泥膨脹。因為在高有機負荷環境中絮狀菌比大多數絲狀菌有更強的吸附和存貯營養物能力,能夠充分利用高濃度的底物迅速增殖,具有較高的比生長速率,抑制了絲狀菌的生長。在低負荷下混合液中底物濃度長時間都低,由於缺少足夠的營養底物,絮狀菌的生長受到抑制,而絲狀菌具有較大的比表面積,當環境不利於微生物的生長時,絲狀菌會從菌膠團中伸展出來以增加其攝取營養物質的表面積。一方面,伸出絮體之外的絲狀菌更易吸收底物和營養,其生長速率高於絮狀菌,從而成為活性污泥中的優勢菌種;另一方面,絲狀菌越多,其菌絲越長,活性污泥越不易沉降,SVI越高,導致了污泥膨脹。
(3)pH
pH 對金屬去除影響很大,因為pH不僅影響金屬的沉降狀態,而且影響吸附點的電荷。一般pH 升高有利於污泥對陽離子金屬的吸附。直至產生氫氧化物沉澱,反之則有利於對呈負電荷狀態存在的金屬的吸附。但是,過高或過低的pH對微生物生長繁殖不利,具體表現在以下幾個方面:①pH過低(pH=1.5),會引起微生物體表面由帶負電變為帶正電,進而影響微生物對營養物的吸收。②過高或過低的 PH還可影響培養基中有機化合物的離子化作用,從而間接影響微生物。③酶只有在最適宜的pH時才能發揮其最大活性,極端的pH使酶的活性降低,進而影響微生物細胞內的生物化學過程,甚至直接破壞微生物細胞。④過高或過低的pH均降低微生物對高溫的抵抗能力。
(4)生物固體停留時間(Qc)
Qc對陽離子金屬去除有較大影響,因為活性污泥表面常被難溶性或微溶性的多聚物所包圍(如多糖),這些多聚物表面的電荷可使金屬迅速地得以去除。已經證實,細菌多聚物產生和細菌生長相有關,穩定相和內源呼吸階段多聚物產量最大,而Qc增大,污泥中細菌處於穩定相和內源呼吸階段,有利於對金屬的去除。
(5)污泥濃度
污泥濃度高,吸附點也隨著增加,從而有利於金屬的去除。從去除金屬的角度出發,高有機負荷,高污泥濃度的執行方式最為理想。
活性污泥法處理含砷廢水,不論在處理費用,還是二次污染,或者工程化方面,都比傳統處理方法具有相當突出的優勢。雖然在理論研究方面還不是十分完善,但是在處理機制和影響因素方面都已達成一定的共識。如果在處理工藝上再進行一定的改進,如往污泥中投加優勢菌種,可以改善污水的處理效果;此外,還可以引進生活污水進行混合處理並進行曝氣,這樣不僅降低了砷的濃度以及砷對污泥的毒害作用,同時還解決了活性污泥的營養源問題,為活性污泥法處理含砷廢水的工程化應用開辟了一片新天地。
3.2 菌藻共生體
國外研究表明,生物遷移轉化作為一種新的微生物法處理重金屬廢水,與傳統方法相比,具有更高效,費用更低等優點。用小球藻的生物遷移轉化處理重金屬廢水的工藝,有一些已投入工程運作。
菌藻共生體對砷的去除機理可認為是藻類和細菌的共同作用。許多研究表明,在去除金屬過程中,微生物的表面起著重要作用。菌藻共生體中,藻類和細菌表面存在許多功能鍵,如羥基、氨基、羧基、硫基等。這些功能鍵可與水中砷共價結合,砷先與藻類和細菌表面上親和力最強的鍵結合,然後與較弱的鍵結合,吸附在細胞表面的砷再慢慢滲入細胞內原生質中。因而在藻類和細胞吸附砷中,可能經過快吸附過程和較慢吸附兩過程後,吸附作用才趨於平衡。
廖敏等人曾研究了菌藻共生體對廢水中砷的去除效果。研究發現:培養分離所得菌藻共生體中以小球藻為主,此時菌藻共生體積累砷達7.47 g/kg乾重。在引入菌藻共生體並培養16h後,其對無營養源的含As(III),As(V)的廢水除砷率達80%以上,並趨於平衡,含營養源的As(III)、As(V)的廢水中,菌藻共生體對As(V)的去除率大於As(III),對As(V)去除率超過70%,但對As(III)的去除率也在50%以上,在除砷過程中同時出現砷的解吸現象。在無營養源條件下,對As(III)、As(V)混合廢水的除砷率超過80%。
菌藻共生體是一種易培養獲得的材料。其對廢水中的砷具有較強的去除力,並能同時去除廢水中的營養物,因此其在含砷廢水的處理運用中有著廣闊的前景。
3.3 投菌活性污泥法
投菌活性污泥法(Application of Bio-Augmentation Process with Liquid Live microani *** s)是將具有強活力的細菌投入到曝氣池裡去,使曝氣池混合液內的各種細菌處於最佳活性狀態,這樣.不僅投入了吸氣池內所缺少的細菌,在流入污水水質不變的條件下,微生物氧化作用顯著,而且,當污水水質改變,環境變異的情況下,微生物仍能適應,保持活性,其氧化代謝過程依然充分,投入菌液後使曝氣池耐沖擊負荷,提高污水處理廠的處理效果,改善了出水水質。
投菌活性污泥法(LLMO)是出之一種新的概念,它是根據在同一環境里,最適宜的細菌能自然繁殖,同樣,污水處理廠曝氣池混合液內的細菌也會自然繁殖到一定數目,自然界無處不可找到細茵,然而,在同一環境里並非可以找到一切細菌這一原則,作為理論指導,從自然界土壤內篩選出污水廠中的有用細菌製成液態的或固態的產品。液態菌液微生物成活率高;固態菌使用前需先用水溶成液態,細菌的成活率較液態菌液低,使用時按一定比例將液態菌液投入曝氣池內或投到需用處,投菌活性污泥法(LLMO)在國外已收到良好的應用效果。
因此,我們可望通過向活性污泥中投加對砷具有高耐受力,對砷具有特殊處理效果的混合菌種,達到對砷的高效處理,凈化工業含砷廢水。
4 前景展望
隨著冶金、化工等產業的日益發展,以及含砷製品市場的日益拓大,含砷廢水的排放和污染問題,必將影響到人們的生活水平的提高,影響到人類生存環境的改善,所以解決含砷廢水的污染問題已迫在眉睫。然而傳統的處理方法都存在一定的問題。如化學法,雖然在工程上有了一定的應用,處理效果也較明顯,但由於化學葯劑的新增,導致了產生大量的廢渣,而這些廢渣目前尚無較好的處置辦法。而物理法的處理費用較高,處理投資非常大,無法進行工程運作。微生物法作為一種最有前途的處理方法,不僅具有高效、無二次污染,而且處理費用低等優點。其中,活性污泥法處理含砷廢水的理論在國內外處於熱點研究探索中,又由於活性污泥具有的來源廣泛,容易培養,處理後二次污染小等一系列優點,使其在工程上的應用成為可能,成為含砷廢水的主要處理方法。此外,若對單純活性污泥法進行工藝上的改進,如引進優勢菌種,或摻入生活污水進行混合處理等工藝上的改進,都可能為活性污泥法的應用創造更為廣闊的前景。

高cod廢水處理怎樣處理

好的微電解大概能夠去除50%COD,電催化氧化可以去除70%左右。溼式氧化可以去除90%以上,不過你還是要自己做實驗。

怎樣處理廢紙廢水臭味

有用臭氧發生器的,效果一般;最常見的是使用活性炭過濾,但是再生周期很短,成本不小。

工業廢水怎樣處理?

中和法:調節pH值,用於酸鹼性廢水的預處理,常採用以廢治廢的方法。
中和混凝沉澱法:類似中和法,使廢水中的重金屬形成氫氧化物沉澱,同時投加高分子絮凝劑,改善沉澱效能。

廢水是怎樣處理

廢水處理就是利用物理、化學和生物的方法對廢水進行處理,使廢水凈化,減少污染,以至達到廢水回收、復用,充分利用水資源。
1,物理方法
通過物理作用分離、回收廢水中不溶解的呈懸浮狀態的污染物(包括油膜和油珠)的廢水處理法,可分為重力分離法、離心分離法和篩濾截留法等。以熱交換原理為基礎的處理法也屬於物理處理法。
2,化學方法
通過化學反應和傳質作用來分離、去除廢水中呈溶解、膠體狀態的污染物或將其轉化為無害物質的廢水處理法。在化學處理法中,以投加葯劑產生化學反應為基礎的處理單元是:混凝、中和、氧化還原等;而以傳質作用為基礎的處理單元則有:萃取、汽提、吹脫、吸附、離子交換以及電滲析和反滲透等。後兩種處理單元又合稱為膜分離技術。其中運用傳質作用的處理單元既具有化學作用,又有與之相關的物理作用,所以也可從化學處理法中分出來 ,成為另一類處理方法,稱為物理化學法。
3,生物方法
通過微生物的代謝作用,使廢水中呈溶液、膠體以及微細懸浮狀態的有機污染物,轉化為穩定、無害的物質的廢水處理法。根據作用微生物的不同,生物處理法又可分為需氧生物處理和厭氧生物處理兩種型別。廢水生物處理廣泛使用的是需氧生物處理法,按傳統,需氧生物處理法又分為活性污泥法和生物膜法兩類。活性污泥法本身就是一種處理單元,它有多種執行方式。屬於生物膜法的處理裝置有生物濾池、生物轉盤、生物接觸氧化池以及生物流化床等。生物氧化塘法又稱自然生物處理法。厭氧生物處理法,又名生物還原處理法,主要用於處理高濃度有機廢水和污泥。使用的處理裝置主要為消化池。

葯廠的 廢水怎麼處理?

葯品管理法裡面有專門的規定的!

閱讀全文

與污水站的QC怎麼寫相關的資料

熱點內容
反滲透ORP表為什麼充不下來 瀏覽:617
煎炸油過濾機的價格 瀏覽:944
風雲空調濾芯怎麼拆 瀏覽:900
水處理反滲透有什麼作用 瀏覽:668
選擇題反滲透膜的滲透特點是 瀏覽:641
蒸餾水各元素含量 瀏覽:283
老闆油煙凈化器一體灶怎麼選擇 瀏覽:243
怎麼讓家庭流水景觀不結水垢 瀏覽:95
污水廠設備維護費噸水多少 瀏覽:228
納濾家用膜 瀏覽:497
上海愛克樹脂山東 瀏覽:294
耐高溫特種樹脂 瀏覽:723
污水溶氧消失 瀏覽:774
反滲透膜鹼洗配葯和去除的 瀏覽:106
反滲透ro膜堵塞怎麼清理 瀏覽:714
四段反滲透系統回收率80 瀏覽:1
唐三鏡蒸餾防糊鍋 瀏覽:254
黃州南湖工業園污水處理廠 瀏覽:76
紙機白水的回用 瀏覽:783
excel過濾數據函數 瀏覽:411