導航:首頁 > 污水知識 > 模擬廢水中硝酸鹽氮有嗎

模擬廢水中硝酸鹽氮有嗎

發布時間:2024-11-08 17:47:22

1. 高濃度氨氮廢水的處理方法有哪些呀!急!!

新型生物脫氮法
近年來國內外出現了一些全新的脫氮工藝,為高濃度氨氮廢水的脫氮處理提供了新的途徑。主要有短程硝化反硝化、好氧反硝化和厭氧氨氧化。
1 短程硝化反硝化
生物硝化反硝化是應用最廣泛的脫氮方式。由於氨氮氧化過程中需要大量的氧氣,曝氣費用成為這種脫氮方式的主要開支。短程硝化反硝化(將氨氮氧化至亞硝酸鹽氮即進行反硝化),不僅可以節省氨氧化需氧量而且可以節省反硝化所需炭源。Ruiza等[16]用合成廢水(模擬含高濃度氨氮的工業廢水)試驗確定實現亞硝酸鹽積累的最佳條件。要想實現亞硝酸鹽積累,pH不是一個關鍵的控制參數,因為pH在6.45~8.95時,全部硝化生成硝酸鹽,在pH<6.45或pH>8.95時發生硝化受抑,氨氮積累。當DO=0.7 mg/L時,可以實現65%的氨氮以亞硝酸鹽的形式積累並且氨氮轉化率在98%以上。DO<0.5 mg/L時發生氨氮積累,DO>1.7 mg/L時全部硝化生成硝酸鹽。劉俊新等[17]對低碳氮比的高濃度氨氮廢水採用亞硝玻型和硝酸型脫氮的效果進行了對比分析。試驗結果表明,亞硝酸型脫氮可明顯提高總氮去除效率,氨氮和硝態氮負荷可提高近1倍。此外,pH和氨氮濃度等因素對脫氮類型具有重要影響。
劉超翔等[18]短程硝化反硝化處理焦化廢水的中試結果表明,進水COD、氨氮、TN 和酚的濃度分別為1201.6、510.4、540.1、110.4 mg/L時,出水COD、氨氮、TN和酚的平均濃度分別為197.1、14.2、181.5、0.4 mg/L,相應的去除率分別為83.6%、97.2%、66.4%、99.6%。與常規生物脫氮工藝相比,該工藝氨氮負荷高,在較低的C/N值條件下可使TN去除率提高。
2 厭氧氨氧化(ANAMMOX)和全程自養脫氮(CANON)
厭氧氨氧化是指在厭氧條件下氨氮以亞硝酸鹽為電子受體直接被氧化成氮氣的過程。ANAMMOX的生化反應式為:
NH4++NO2-→N2↑+2H2O
ANAMMOX菌是專性厭氧自養菌,因而非常適合處理含NO2-、低C/N的氨氮廢水。與傳統工藝相比,基於厭氧氨氧化的脫氮方式工藝流程簡單,不需要外加有機炭源,防止二次污染,又很好的應用前景。厭氧氨氧化的應用主要有兩種:CANON工藝和與中溫亞硝化(SHARON)結合,構成SHARON-ANAMMOX聯合工藝。
CANON工藝是在限氧的條件下,利用完全自養性微生物將氨氮和亞硝酸鹽同時去除的一種方法,從反應形式上看,它是SHARON和ANAMMOX工藝的結合,在同一個反應器中進行。孟了等[19]發現深圳市下坪固體廢棄物填埋場滲濾液處理廠,溶解氧控制在1 mg/L左右,進水氨氮<800 mg/L,氨氮負荷<0.46 kgNH4+/(m3•d)的條件下,可以利用SBR反應器實現CANON工藝,氨氮的去除率>95%,總氮的去除率>90%。
Sliekers等[20]的研究表明ANAMMOX和CANON過程都可以在氣提式反應器中運轉良好,並且達到很高的氮轉化速率。控制溶解氧在0.5mg/L左右,在氣提式反應器中,ANAMMOX過程的脫氮速率達到8.9 kgN/(m3•d),而CANON過程可以達到1.5 kgN/(m3•d)。
3 好氧反硝化
傳統脫氮理論認為,反硝化菌為兼性厭氧菌,其呼吸鏈在有氧條件下以氧氣為終末電子受體在缺氧條件下以硝酸根為終末電子受體。所以若進行反硝化反應,必須在缺氧環境下。近年來,好氧反硝化現象不斷被發現和報道,逐漸受到人們的關注。一些好氧反硝化菌已經被分離出來,有些可以同時進行好氧反硝化和異養硝化(如Robertson等分離、篩選出的Tpantotropha.LMD82.5)。這樣就可以在同一個反應器中實現真正意義上的同步硝化反硝化,簡化了工藝流程,節省了能量。
賈劍暉等[21]用序批式反應器處理氨氮廢水,試驗結果驗證了好氧反硝化的存在,好氧反硝化脫氮能力隨混合液溶解氧濃度的提高而降低,當溶解氧濃度為0.5 mg/L時,總氮去除率可達到66.0%。
趙宗勝等[22]連續動態試驗研究表明,對於高濃度氨氮滲濾液,普通活性污泥達的好氧反硝化工藝的總氮去除串可達10%以上。硝化反應速率隨著溶解氧濃度的降低而下降;反硝化反應速率隨著溶解氧濃度的降低而上升。硝化及反硝化的動力學分析表明,在溶解氧為0.14 mg/L左右時會出現硝化速率和反硝化速率相等的同步硝化反硝化現象。其速率為4.7mg/(L•h),硝化反應KN=0.37 mg/L;反硝化反應KD=0.48 mg/L。
在反硝化過程中會產生N2O是一種溫室氣體,產生新的污染,其相關機制研究還不夠深入,許多工藝仍在實驗室階段,需要進一步研究才能有效地應用於實際工程中。另外,還有諸如全程自養脫氮工藝、同步硝化反硝化等工藝仍處在試驗研究階段,都有很好的應用前景。

2. 亞硝酸鹽超標如何處理

行業處罰:食品亞硝酸鹽標准超標,如果違法生產經營的食品、食品添加劑貨值金額不足一萬元的,並處五萬元以上十萬元以下罰款;貨值金額一萬元以上的,並處貨值金額十倍以上二十倍以下罰款;情節嚴重的,吊銷許可證。

3. 請問現在污水處理軟體主流的有哪些,我們想做污水廠全廠模擬,不要那種小軟體,GPS-X 和Biowin 有啥區別啊

為什麼選擇GPS-X模擬抄軟體?

GPS-X是第一個商業化的污水處理廠動態模擬軟體,仍然是今天首選的解決方案。

它的最主要的一個優勢是可以實現在線模擬。

GPS-X的優點

·污水進水特徵顧問:在進行模擬以前驗證你的進水數據的精度和一致性。

·快速顯示區域:你需要的工程參數可以自動的總結並顯示,實時的更新,只要簡單的一個點擊就可輸出到Excel文件。

·動態模擬:GPS-X提供污水處理模擬領域最快速的動態模擬,能快速的完成其它模擬軟體需要長時間才能完成的模擬工作。

·用戶界面:直觀,友好。

·綜合的污水處理廠單元工藝模型庫(下圖):提供給用戶設計和優化各種污水處理工藝的建模工具,包括MBR, IFAS, UASB,反消化濾池,污泥預處理,厭氧消化,以及先進的側流工藝的全污水處理廠的工藝模型以及先進的側流工藝的全污水處理廠的工藝模型。

4. 污水處理中氨氮高怎麼處理

利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。例如:氣水分離膜脫除氨氮。氨氮在水中存在著離解平衡,隨著PH升高,氨在水中NH3形態差純比例升高,在一定溫度和壓力下,NH3的氣態和液態兩項達到平衡。根據化學平衡移動的原理即呂.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相對的和暫時的。化學平衡只是在一定條件下才能保持「假若改變平衡系統的條件之一,如濃度、壓力或溫度,平衡就向能減弱這個改變的方向移動。」遵從這一原理進行了如下設計理念在膜的一側是高濃度氨氮廢水,另一側是酸性水溶液或水。當左側溫度T1>20,PH1>9,P1>P2保持一定的壓力差,那麼廢水中的游離氨NH4+,就變為氨分子NH3,並經原料液側介面擴散至膜表面,在膜表面分壓差的作用下,穿越膜孔,進入吸收液,迅速與酸性溶液中的H+反應生成銨鹽。

全程自養脫氮的全過程實在一個反應器中完成,其機理尚不清楚。Hippen等人發現在限制溶解氧(DO濃度為0.8·1.0mg/l)和不加有機碳源的情況下,有超過60%的氨氮轉化成N2而得以去除。同時Helmer等通過實驗證明在低DO濃度下,細菌以亞硝酸根離子為電子受體,以銨根離子為電子供體,最終產物為氮氣。有實驗用熒光原位雜交技術監測全程自養脫氮反應器中的微生物,發現在反應器處於穩定階段時即使在限制曝氣的情況下,反應器中任然存在有活性的厭氧氨氧化菌,不存在硝化菌。有85%的清慶銷氨氮轉化為氮氣。鑒於以上理論,全程自養脫氮可能包括兩步第一是將部分氨氮氧化為煙硝酸鹽,第二是厭氧氨氧化。

5. 廢水中氨氮應該如何去除

高氨氮廢水處理方法:
一、物化法
1. 吹脫法
在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法,一般認為吹脫與溫度、PH、氣液比有關。
2. 沸石脫氨法
利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。應用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。採用焚燒法時,產生的氨氣必須進行處理。
3.膜分離技術
利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。例如:氣水分離膜脫除氨氮。氨氮在水中存在著離解平衡,隨著PH升高,氨在水中NH3形態比例升高,在一定溫度和壓力下,NH3的氣態和液態兩項達到平衡。根據化學平衡移動的原理即呂.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相對的和暫時的。化學平衡只是在一定條件下才能保持"假若改變平衡系統的條件之一,如濃度、壓力或溫度,平衡就向能減弱這個改變的方向移動。"遵從這一原理進行了如下設計理念在膜的一側是高濃度氨氮廢水,另一側是酸性水溶液或水。當左側溫度T1>20℃,PH1>9,P1>P2保持一定的壓力差,那麼廢水中的游離氨NH4+,就變為氨分子NH3,並經原料液側介面擴散至膜表面,在膜表面分壓差的作用下,穿越膜孔,進入吸收液,迅速與酸性溶液中的H+反應生成銨鹽。
4.MAP沉澱法
主要是利用以下化學反應:Mg2++NH4++PO43-=MgNH4PO4
理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2 + ][NH4+][PO43 -]>2.5×10–13時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。
5.化學氧化法
利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。
二、生物脫氮法
傳統和新開發的脫氮工藝有A/O,兩段活性污泥法、強氧化好氧生物處理、短程硝化反硝化、超聲吹脫處理氨氮法方法等。
1.A/O工藝將前段缺氧段和後段好氧段串聯在一起,A段DO不大於0.2mg/L,O段DO=2~4mg/L。在缺氧段異養菌將污水中的澱粉、纖維、碳水化合物等懸浮污染物和可溶性有機物水解為有機酸,使大分子有機物分解為小分子有機物,不溶性的有機物轉化成可溶性有機物,當這些經缺氧水解的產物進入好氧池進行好氧處理時,提高污水的可生化性,提高氧的效率;在缺氧段異養菌將蛋白質、脂肪等污染物進行氨化(有機鏈上的N或氨基酸中的氨基)游離出氨(NH3、NH4+),在充足供氧條件下,自養菌的硝化作用將NH3-N(NH4+)氧化為NO3-,通過迴流控制返回至A池,在缺氧條件下,異氧菌的反硝化作用將NO3-還原為分子態氮(N2)完成C、N、O在生態中的循環,實現污水無害化處理。其特點是缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷,反硝化反應產生的鹼度可以補償好氧池中進行硝化反應對鹼度的需求。好氧在缺氧池之後,可以使反硝化殘留的有機污染物得到進一步去除,提高出水水質。BOD5的去除率較高可達90~95%以上,但脫氮除磷效果稍差,脫氮效率70~80%,除磷只有20~30%。盡管如此,由於A/O工藝比較簡單,也有其突出的特點,目前仍是比較普遍採用的工藝。
2.兩段活性污泥法能有效的去除有機物和氨氮,其中第二級處於延時曝氣階段,停留時間在36小時左右,污水濃度在2g/l以下,可以不排泥或少排泥從而降低污泥處理費用。
3.強氧化好氧生物處理其典型代表有粉末活性炭法(PACT工藝)
粉末活性碳法的主要特點是向曝氣池中投加粉末活性炭(PAC)利用粉末活性炭極為發達的微孔結構和更大的吸附能力,使溶解氧和營養物質在其表面富集,為吸附在PAC 上的微生物提供良好的生活環境從而提高有機物的降解速率。
近年來國內外出現了一些全新的脫氮工藝,為高濃度氨氮廢水的脫氮處理提供了新的途徑。主要有短程硝化反硝化、好氧反硝化和厭氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是應用最廣泛的脫氮方式,是去除水中氨氮的一種較為經濟的方法,其原理就是模擬自然生態環境中氮的循環,利用硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。由於氨氮氧化過程中需要大量的氧氣,曝氣費用成為這種脫氮方式的主要開支。短程硝化反硝化是將氨氮氧化控制在亞硝化階段,然後進行反硝化,省去了傳統生物脫氮中由亞硝酸鹽氧化成硝酸鹽,再還原成亞硝酸鹽兩個環節(即將氨氮氧化至亞硝酸鹽氮即進行反硝化)。該技術具有很大的優勢:①節省25%氧供應量,降低能耗;②減少40%的碳源,在C/N較低的情況下實現反硝化脫氮;③縮短反應歷程,節省50%的反硝化池容積;④降低污泥產量,硝化過程可少產污泥33%~35%左右,反硝化階段少產污泥55%左右。實現短程硝化反硝化生物脫氮技術的關鍵就是將硝化控制在亞硝酸階段,阻止亞硝酸鹽的進一步氧化。
5. 厭氧氨氧化(ANAMMOX)和全程自養脫氮(CANON)
厭氧氨氧化是指在厭氧條件下氨氮以亞硝酸鹽為電子受體直接被氧化成氮氣的過程。
厭氧氨氧化(Anaerobicammoniaoxidation,簡稱ANAMMOX)是指在厭氧條件下,以Planctomycetalessp為代表的微生物直接以NH4+為電子供體,以NO2-或NO3-為電子受體,將NH4+、NO2-或NO3-轉變成N2的生物氧化過程。該過程利用獨特的生物機體以硝酸鹽作為電子供體把氨氮轉化為N2,最大限度的實現了N的循環厭氧硝化,這種耦合的過程對於從厭氧硝化的廢水中脫氮具有很好的前景,對於高氨氮低COD的污水由於硝酸鹽的部分氧化,大大節省了能源。目前推測厭氧氨氧化有多種途徑。其中一種是羥氨和亞硝酸鹽生成N2O的反應,而N2O可以進一步轉化為氮氣,氨被氧化為羥氨。另一種是氨和羥氨反應生成聯氨,聯氨被轉化成氮氣並生成4個還原性[H],還原性[H]被傳遞到亞硝酸還原系統形成羥氨。第三種是:一方面亞硝酸被還原為NO,NO被還原為N2O,N2O再被還原成N2;另一方面,NH4+被氧化為NH2OH,NH2OH經N2H4,N2H2被轉化為N2。厭氧氨氧化工藝的優點:可以大幅度地降低硝化反應的充氧能耗;免去反硝化反應的外源電子供體;可節省傳統硝化反硝化反應過程中所需的中和試劑;產生的污泥量極少。厭氧氨氧化的不足之處是:到目前為止,厭氧氨氧化的反應機理、參與菌種和各項操作參數不明確。
全程自養脫氮的全過程實在一個反應器中完成,其機理尚不清楚。Hippen等人發現在限制溶解氧(DO濃度為0.8·1.0mg/l)和不加有機碳源的情況下,有超過60%的氨氮轉化成N2而得以去除。同時Helmer等通過實驗證明在低DO濃度下,細菌以亞硝酸根離子為電子受體,以銨根離子為電子供體,最終產物為氮氣。有實驗用熒光原位雜交技術監測全程自養脫氮反應器中的微生物,發現在反應器處於穩定階段時即使在限制曝氣的情況下,反應器中任然存在有活性的厭氧氨氧化菌,不存在硝化菌。有85%的氨氮轉化為氮氣。鑒於以上理論,全程自養脫氮可能包括兩步第一是將部分氨氮氧化為煙硝酸鹽,第二是厭氧氨氧化。
6. 好氧反硝化
傳統脫氮理論認為,反硝化菌為兼性厭氧菌,其呼吸鏈在有氧條件下以氧氣為終末電子受體在缺氧條件下以硝酸根為終末電子受體。所以若進行反硝化反應,必須在缺氧環境下。近年來,好氧反硝化現象不斷被發現和報道,逐漸受到人們的關注。一些好氧反硝化菌已經被分離出來,有些可以同時進行好氧反硝化和異養硝化(如Robertson等分離、篩選出的Tpantotropha.LMD82.5)。這樣就可以在同一個反應器中實現真正意義上的同步硝化反硝化,簡化了工藝流程,節省了能量。
7.超聲吹脫處理氨氮
超聲吹脫法去除氨氮是一種新型、高效的高濃度氨氮廢水處理技術,它是在傳統的吹脫方法的基礎上,引入超聲波輻射廢水處理技術,將超聲波和吹脫技術聯用而衍生出來的一種處理氨氮的方法。將這兩種方法聯用不僅改進了超聲波處理廢水成本較高的問題,也彌補了傳統吹脫技術去除氨氮不佳的缺陷,超生吹脫法在保證處理氨氮的效果的同時還能對廢水中有機物的降解起到一定的提高作用。技術特點(1)高濃度氨氮廢水採用90年代高新技術--超聲波脫氮技術,其總脫氮效率在70~90%,不需要投加化學葯劑,不需要加溫,處理費用低,處理效果穩定。(2)生化處理採用周期性活性污泥法(CASS)工藝,建設費用低,具有獨特的生物脫氮功能,處理費用低,處理效果穩定,耐負荷沖擊能力強,不產生污泥膨脹現象,脫氮效率大於90%,確保氨氮達標。

6. 脫硫廢水中有機污染物的處理

火電廠脫硫廢水來源於濕法脫硫(FGD)工藝產生的廢水,脫硫廢水污染嚴重,排水溫度在40℃~50℃之間,懸浮物、含鹽量、重金屬等雜質的含量極高。現有國內電廠脫硫廢水的處理基本採用加葯處理的物化方法,主要是針對其中的懸浮物以及重金屬離子予以去除,處理出水執行標准有《污水綜合排放標准》(GB 18466-2005)、《火電廠水質石灰石-石膏濕法脫硫廢水水質控制指標》(DL/T 997-2006)。
在實際的運行過程中,因脫硫廢水水質成分主要為第一類污染物和第二類污染物,在葯劑的物化反應下,脫硫廢水中的重金屬離子和懸浮物、pH值等指標能達到排放要求,但廢水中的有機污染物(COD等)指標因工藝流程未對其進行專門的處理設計,只是在葯劑反應過程中隨其他污染物排除一部分,其出水參數很不穩定,多數情況下無法達到排放標准,有機污染物難於去除,已成為眾多電廠脫硫廢水處理排放的一大難題,困擾了很多電廠。
目前,國內環保形勢嚴峻,在節水和節能環保的大形勢下,很多電廠順應國家環保形勢對脫硫廢水處理提出了零排放處理回用的要求,因此,脫硫廢水中的有機污染物COD指標的去除成為了脫硫廢水處理必須克服的難題。本論文主要針對脫硫廢水中有機污染物的去除進行分析,研究一種應用於脫硫廢水有機污染物去除的處理
工藝。
2 脫硫廢水的特性
電廠脫硫工藝產生的脫硫廢水主要特徵是呈現弱酸性,pH值5~6;主要特點是高懸浮物、高濁度、高黏度、高含鹽量以及難降解有機物,並含有Hg、Pb、Ni、Hs、As、Cd、Cr等重金屬離子和氟化物,有機污染物COD的含量一般為150~400mg/L,其中有機污染物來源於燃煤過程及脫硫過程脫硫劑的一些產物,具有難於降解、處理難度高的特點。基於脫硫廢水的高含鹽、有機物難降解等特性,並考慮處理過程中系統運行的穩定性,主要考慮採用最利於有機污染物處理的生物處理方法去除脫硫廢水中的該指標。
3 生物處理方法
綜合分析現有的生物處理方法,適用於脫硫廢水特性的生物處理工藝主要有以下五種:
3.1 傳統活性污泥法
活性污泥法是以活性污泥為主體的污水處理技術,它採用人工曝氣的手段使活性污泥均勻分散並懸浮於反應器中,與廢水充分接觸,並在有溶解氧的條件下對廢水中所含的有機物進行微生物的合成和分解等代謝活動。而脫硫廢水鹽度對活性污泥法的影響較大,因此,對活性污泥進行馴化培養出具有良好有機物降解性能的耐鹽微生物是處理高鹽廢水的重要前提。
3.2 厭氧處理系統
近幾十年來,由於厭氧生物技術發展迅速,出現了一大批高效厭氧反應器,這些反應器中生物固體濃度很高、泥齡很長,處理能力大大的提高,在高濃度的廢水中得以大量應用。高濃度的Na+或CL-會對厭氧生物產生抑製作用,但是厭氧或兼氧微生物對鹽的適應性和其他離子產生的拮抗作用會減輕鹽對微生物的毒害作用,因此厭氧法可應用於高含鹽廢水處理系統。
3.3 好氧顆粒污泥
好氧顆粒污泥技術是將生物自絮凝原理應用於好氧反應器,使好氧絮狀污泥在一定工藝條件下實現好氧顆粒化。好氧顆粒污泥具有沉降性好、抗負荷沖擊能力強、持留生物量高以及脫氮除磷效果好等優點,而且它還能集好氧、厭氧和兼氧微生物於一體,因此好氧顆粒污泥能夠有效處理各種難降解的廢水。
3.4 嗜鹽菌
嗜鹽菌作為一類新型的、極具應用前景的微生物資源,近年來受到人們的廣泛關注,它們具有極為特殊的生理結構和代謝機制,同時還產生了許多具有特殊性質的生物活性物質,因此被廣泛地應用於含鹽量高的廢水處理。
3.5 好氧-厭氧組合工藝
由於單獨的好氧和厭氧工藝在處理廢水時受到許多限制,單一的系統往往不能將有機污染物徹底去除,尤其是難降解的廢水系統,因此為了更好地處理高鹽脫硫廢水,往往結合好氧以及厭氧的組合工藝,以達到更好的效果。
本文脫硫廢水生物處理工藝將採用好氧-厭氧的組合工藝進行處理,針對廢水中的懸浮物、重金屬指標的處理不做論述,生物處理所處理的脫硫廢水是經預處理系統去除此類指標後的廢水。
4 好氧-厭氧的組合工藝處理技術
脫硫廢水中的COD等有機污染物主要來自煤(主要成分為有機質)、石灰石以及脫硫反應生成物中的亞硝酸鹽、亞硫酸鹽等還原性物質,而BOD則主要是污水中的氮氧化物。經過預處理處理後,廢水的pH值、懸浮物、重金屬離子、氟化物等污染指標被去除,但廢水中的COD、硫酸根等指標還未得到去除,需採用生物處理方法進一步處理。而硫酸根、氯根等鹽的高含量對廢水生化存在一定的抑製作用,使脫硫廢水難於生化,因此為提高其可生化性,在生化處理過程,需投加成分均衡的營養物質保證生化處理微生物所需的各類營養指標,而在電廠,基本都有生活污水處理系統,其水量不大,多在5~15t/h之間,這股水進入脫硫廢水系統可以很好地解決營養平衡問題,且可以提高水的回收量,將電廠生活區的生活污水引入脫硫廢水系統進行綜合處理,將同時實現兩股水的節水目標,並保證了脫硫廢水生物處理的基本營養條件。 脫硫廢水生物處理系統採用厭氧+好氧的組合處理工藝,厭氧採用EGSB厭氧系統,而好氧則採用BAF曝氣生物濾池好氧系統。EGSB厭氧系統通過培養SRB厭氧細菌病通過其代謝作用去除廢水中的SO42-、殘余重金屬離子及部分COD等,而通過BAF曝氣生物濾池的生化作用將COD、氮等進行硝化處理,達到處理要求,經該系統處理後,廢水可進入後續除鹽或其他指標處理系統,進一步處理而獲得高品質回用水,脫硫廢水生物處理流程圖如圖1所示:
EGSB厭氧系統適用於低濃度有機污染物處理系統,運行過程培養適於脫硫廢水環境的SRB厭氧細菌來處理污染物,SRB厭氧細菌是一類能通過異化作用進行硫酸鹽還原的一類細菌,這種厭氧細菌雖然生長緩慢,但具有極強的生存能力且分布很廣泛,SRB厭氧細菌已經成功地應用在了與脫硫廢水極類似的多種水處理系統中,它的代謝利用硫酸根作為最終的電子受體,將有機污染物作為細胞合成的碳源和電子供體,同時將硫酸根還原為硫化物,使廢水中的硫酸鹽得以去除。而產生的溶解態的S2-則與廢水中殘余的重金屬離子反應形成金屬硫化物沉澱,可進一步去除重金屬離子,此外SRB厭氧細菌在代謝過程中分解有機硫以二氧化碳氣體的形式
排出。
經過厭氧反應後,廢水中的一些重大生化抑制指標得以去除,廢水的可生化性提高,因此,廢水進入好氧生物系統進行進一步處理,好氧生物反應系統採用BAF曝氣生物濾池處理系統,並接種引入主體處理微生物:嗜鹽菌,適應脫硫廢水的高含鹽環境,曝氣生物濾池是固定化生物反應器的一種,近年來被廣泛應用於各類高含鹽廢水的處理。曝氣生物濾池能夠通過固定化保護微生物,降低其在極端環境中所受的傷害,提高系統對有毒有害物質及環境沖擊負荷的耐受力,使系統保持較高的穩定性。研究表明,曝氣生物濾池在高含鹽環境中能保持較高的有機物去除率。
因脫硫廢水中的鹽分含量過高,會對微生物的活動帶來一定的難度,而曝氣生物濾池接種培養的核心處理載體,嗜鹽菌是專門在高鹽環境下生長的細菌,由於嗜鹽菌在高鹽環境下能夠在細胞內聚集鉀離子和小分子極性物質,調節細胞滲透壓,維持細胞內外滲透壓的平衡,幫助從高鹽環境獲取微生物活動所需的水,並且這些極性分子可以迅速合成和失去,快速適應外界的環境變化。嗜鹽菌的蛋白質中含有過量的酸性氨基酸和非極性的殘余物,過量的酸性物質需要陽離子平衡附近的負電荷,所以嗜鹽酶只有在高鹽環境下才能保持活性。基於嗜鹽菌的反應機理,廢水中的有機污染物得以去除。
經試驗研究,在模擬脫硫廢水水質情況下,通過鹽度的不斷提高和變化,曝氣生物濾池的有機污染物去除率繪製成曲線,鹽度和COD的去除效果關系如圖2所示:
從圖2中可看出,在脫硫廢水含鹽所屬的10000~24000mg/L的范圍內,COD的去除率可穩定維持在94%~96%之間,在這個脫硫廢水的鹽度范圍內,嗜鹽菌能維持其生理代謝的良好活性,對廢水中的有機污染物有較強的降解能力。
經曝氣生物濾池處理後,廢水中的有機污染物等指標得以去除,脫硫廢水可進入下一階段處理流程。
5 結語
脫硫廢水中有機污染物的處理是國內外各大火力發電廠普遍面臨的難題,要實現脫硫廢水系統節水回用,必須對脫硫廢水中的有機污染物進行處理,才能進行後續的膜處理或離子交換系統的除鹽處理,脫硫廢水中有機污染物處理技術的研究成功將成為克服脫硫廢水節水回用難點的一個突破,也將成為脫硫廢水實現零排放生物指標處理工藝的一種可靠選擇。

更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

7. 氨氮廢水怎麼處理

高氨氮廢水如何處理,我們著重介紹一下其處理方法:

物化法
1. 吹脫法
在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法,一般認為吹脫與溫度、PH、氣液比有關。
2. 沸石脫氨法
利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。應用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。採用焚燒法時,產生的氨氣必須進行處理,此法適合於低濃度的氨氮廢水處理,氨氮的含量應在10--20mg/L。
3.膜分離技術
利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。例如:氣水分離膜脫除氨氮。氨氮在水中存在著離解平衡,隨著PH升高,氨在水中NH3形態比例升高,在一定溫度和壓力下,NH3的氣態和液態兩項達到平衡。根據化學平衡移動的原理即呂.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相對的和暫時的。化學平衡只是在一定條件下才能保持「假若改變平衡系統的條件之一,如濃度、壓力或溫度,平衡就向能減弱這個改變的方向移動。」遵從這一原理進行了如下設計理念在膜的一側是高濃度氨氮廢水,另一側是酸性水溶液或水。當左側溫度T1>20℃,PH1>9,P1>P2保持一定的壓力差,那麼廢水中的離子氨NH4+,就變為游離氨NH3,並經原料液側介面擴散至膜表面,在膜表面分壓差的作用下,穿越膜孔,進入吸收液,迅速與酸性溶液中的H+反應生成銨鹽。
4.MAP沉澱法
主要是利用以下化學反應:Mg2++NH4++PO43-=MgNH4PO4
理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2 + ][NH4+][PO43 -]>2.5×10–13時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。
5.化學氧化法
利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。

生物脫氮法
傳統和新開發的脫氮工藝有A/O,兩段活性污泥法、強氧化好氧生物處理、短程硝化反硝化、超聲吹脫處理氨氮法方法等。
1.A/O工藝將前段缺氧段和後段好氧段串聯在一起,A段DO不大於0.2mg/L,O段DO=2~4mg/L。在缺氧段異養菌將污水中的澱粉、纖維、碳水化合物等懸浮污染物和可溶性有機物水解為有機酸,使大分子有機物分解為小分子有機物,不溶性的有機物轉化成可溶性有機物,當這些經缺氧水解的產物進入好氧池進行好氧處理時,提高污水的可生化性,提高氧的效率;在缺氧段異養菌將蛋白質、脂肪等污染物進行氨化(有機鏈上的N或氨基酸中的氨基)游離出氨(NH3、NH4+),在充足供氧條件下,自養菌的硝化作用將NH3-N(NH4+)氧化為NO3-,通過迴流控制返回至A池,在缺氧條件下,異氧菌的反硝化作用將NO3-還原為分子態氮(N2)完成C、N、O在生態中的循環,實現污水無害化處理。其特點是缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷,反硝化反應產生的鹼度可以補償好氧池中進行硝化反應對鹼度的需求。好氧在缺氧池之後,可以使反硝化殘留的有機污染物得到進一步去除,提高出水水質。BOD5的去除率較高可達90~95%以上,但脫氮除磷效果稍差,脫氮效率70~80%,除磷只有20~30%。盡管如此,由於A/O工藝比較簡單,也有其突出的特點,目前仍是比較普遍採用的工藝。
2.兩段活性污泥法能有效的去除有機物和氨氮,其中第二級處於延時曝氣階段,停留時間在36小時左右,污水濃度在2g/l以下,可以不排泥或少排泥從而降低污泥處理費用。
3.強氧化好氧生物處理其典型代表有粉末活性炭法(PACT工藝)
粉末活性碳法的主要特點是向曝氣池中投加粉末活性炭(PAC)利用粉末活性炭極為發達的微孔結構和更大的吸附能力,使溶解氧和營養物質在其表面富集,為吸附在PAC 上的微生物提供良好的生活環境從而提高有機物的降解速率。
近年來國內外出現了一些全新的脫氮工藝,為高濃度氨氮廢水的脫氮處理提供了新的途徑。主要有短程硝化反硝化、好氧反硝化和厭氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是應用最廣泛的脫氮方式,是去除水中氨氮的一種較為經濟的方法,其原理就是模擬自然生態環境中氮的循環,利用硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。由於氨氮氧化過程中需要大量的氧氣,曝氣費用成為這種脫氮方式的主要開支。短程硝化反硝化是將氨氮氧化控制在亞硝化階段,然後進行反硝化,省去了傳統生物脫氮中由亞硝酸鹽氧化成硝酸鹽,再還原成亞硝酸鹽兩個環節(即將氨氮氧化至亞硝酸鹽氮即進行反硝化)。該技術具有很大的優勢:①節省25%氧供應量,降低能耗;②減少40%的碳源,在C/N較低的情況下實現反硝化脫氮;③縮短反應歷程,節省50%的反硝化池容積;④降低污泥產量,硝化過程可少產污泥33%~35%左右,反硝化階段少產污泥55%左右。實現短程硝化反硝化生物脫氮技術的關鍵就是將硝化控制在亞硝酸階段,阻止亞硝酸鹽的進一步氧化。
5. 厭氧氨氧化(ANAMMOX)和全程自養脫氮(CANON)
厭氧氨氧化是指在厭氧條件下氨氮以亞硝酸鹽為電子受體直接被氧化成氮氣的過程。
厭氧氨氧化(Anaerobicammoniaoxidation,簡稱ANAMMOX)是指在厭氧條件下,以Planctomycetalessp為代表的微生物直接以NH4+為電子供體,以NO2-或NO3-為電子受體,將NH4+、NO2-或NO3-轉變成N2的生物氧化過程。該過程利用獨特的生物機體以硝酸鹽作為電子供體把氨氮轉化為N2,最大限度的實現了N的循環厭氧硝化,這種耦合的過程對於從厭氧硝化的廢水中脫氮具有很好的前景,對於高氨氮低COD的污水由於硝酸鹽的部分氧化,大大節省了能源。目前推測厭氧氨氧化有多種途徑。其中一種是羥氨和亞硝酸鹽生成N2O的反應,而N2O可以進一步轉化為氮氣,氨被氧化為羥氨。另一種是氨和羥氨反應生成聯氨,聯氨被轉化成氮氣並生成4個還原性[H],還原性[H]被傳遞到亞硝酸還原系統形成羥氨。第三種是:一方面亞硝酸被還原為NO,NO被還原為N2O,N2O再被還原成N2;另一方面,NH4+被氧化為NH2OH,NH2OH經N2H4,N2H2被轉化為N2。厭氧氨氧化工藝的優點:可以大幅度地降低硝化反應的充氧能耗;免去反硝化反應的外源電子供體;可節省傳統硝化反硝化反應過程中所需的中和試劑;產生的污泥量極少。厭氧氨氧化的不足之處是:到目前為止,厭氧氨氧化的反應機理、參與菌種和各項操作參數不明確。
全程自養脫氮的全過程實在一個反應器中完成,其機理尚不清楚。Hippen等人發現在限制溶解氧(DO濃度為0.8·1.0mg/l)和不加有機碳源的情況下,有超過60%的氨氮轉化成N2而得以去除。同時Helmer等通過實驗證明在低DO濃度下,細菌以亞硝酸根離子為電子受體,以銨根離子為電子供體,最終產物為氮氣。有實驗用熒光原位雜交技術監測全程自養脫氮反應器中的微生物,發現在反應器處於穩定階段時即使在限制曝氣的情況下,反應器中仍然存在有活性的厭氧氨氧化菌,不存在硝化菌。有85%的氨氮轉化為氮氣。鑒於以上理論,全程自養脫氮可能包括兩步第一是將部分氨氮氧化為亞硝酸鹽,第二是厭氧氨氧化。
6. 好氧反硝化
傳統脫氮理論認為,反硝化菌為兼性厭氧菌,其呼吸鏈在有氧條件下以氧氣為終末電子受體在缺氧條件下以硝酸根為終末電子受體。所以若進行反硝化反應,必須在缺氧環境下。近年來,好氧反硝化現象不斷被發現和報道,逐漸受到人們的關注。一些好氧反硝化菌已經被分離出來,有些可以同時進行好氧反硝化和異養硝化(如Robertson等分離、篩選出的Tpantotropha.LMD82.5)。這樣就可以在同一個反應器中實現真正意義上的同步硝化反硝化,簡化了工藝流程,節省了能量。
7.超聲吹脫處理氨氮
超聲吹脫法去除氨氮是一種新型、高效的高濃度氨氮廢水處理技術,它是在傳統的吹脫方法的基礎上,引入超聲波輻射廢水處理技術,將超聲波和吹脫技術聯用而衍生出來的一種處理氨氮的方法。將這兩種方法聯用不僅改進了超聲波處理廢水成本較高的問題,也彌補了傳統吹脫技術去除氨氮不佳的缺陷,超生吹脫法在保證處理氨氮的效果的同時還能對廢水中有機物的降解起到一定的提高作用。技術特點(1)高濃度氨氮廢水採用90年代高新技術——超聲波脫氮技術,其總脫氮效率在70~90%,不需要投加化學葯劑,不需要加溫,處理費用低,處理效果穩定。(2)生化處理採用周期性活性污泥法(CASS)工藝,建設費用低,具有獨特的生物脫氮功能,處理費用低,處理效果穩定,耐負荷沖擊能力強,不產生污泥膨脹現象,脫氮效率大於90%,確保氨氮達標。

閱讀全文

與模擬廢水中硝酸鹽氮有嗎相關的資料

熱點內容
樹脂拉手圖片 瀏覽:823
用除垢劑壞熱水器嗎 瀏覽:515
廢水cod計算環評 瀏覽:529
污水管道破壞用什麼辦法 瀏覽:292
工業污水繳納環保稅填什麼表 瀏覽:119
純凈水煮的羊湯為什麼白 瀏覽:40
花灑除水垢快速 瀏覽:399
上海帝斯曼樹脂產品系列 瀏覽:707
怎樣去掉茶壺外的水垢 瀏覽:352
排水提升泵是幹嘛的 瀏覽:225
濾芯25cm多少寸 瀏覽:432
沁園凈水器哪個是廢水口 瀏覽:38
水上蒸餾去水用什麼 瀏覽:926
n2濾芯有什麼區別 瀏覽:82
山東四象限提升專用變頻器 瀏覽:308
怎麼樣去除污水中的油 瀏覽:961
濱州安裝提升泵師傅電話 瀏覽:67
洗浴中心排污水都有什麼辦法 瀏覽:267
陽台廢水和屋面雨水能否並管 瀏覽:718
廢水比300cc怎麼調節 瀏覽:428