A. 工業廢水如何有效去除氨氮超標
1 高濃度氨氮廢水處理技術
高濃度氨氮廢水是指氨氮質量濃度大於500mg/L
的廢水。伴隨石油、化工、冶金、食品和制葯等工業的發展,以及人民生活水平的不斷提高,工業廢水和城市生活污水中氨氮的含量急劇上升,呈現氨氮污染源多、排放量大,並且排放的濃度增大的特點〔2〕。目前針對高氨氮廢水的處理技術主要使用吹脫法、化學沉澱法等。
1.1 吹脫法
將空氣通入廢水中,使廢水中溶解性氣體和易揮發性溶質由液相轉入氣相,使廢水得到處理的過程稱為吹脫,常見的工藝流程見圖 1。
圖 2 生物脫氮的途徑
用生物法處理含氨氮廢水時,有機碳的相對濃度是考慮的主要因素,維持最佳碳氮比也是生物法成功的關鍵之一。
生物法具有操作簡單、效果穩定、不產生二次污染且經濟的優點,其缺點為佔地面積大,處理效率易受溫度和有毒物質等的影響且對運行管理要求較高。同時,在工業運用中應考慮某些物質對微生物活動和繁殖的抑製作用。此外,高濃度的氨氮對生物法硝化過程具有抑製作用,因此當處理氨氮廢水的初始質量濃度<300
mg/L 時,採用生物法效果較好。
J. Kim 等〔24〕採用小球藻處理美國俄亥俄州辛辛那提磨溪污水處理廠廢水中的氨氮,實驗結果表明,小球藻在經歷24 h 的遲緩期後,在48 h 內氨氮去除率可達50%。
2.3.1 傳統生物硝化反硝化技術
傳統生物硝化反硝化脫氮處理過程包括硝化和反硝化兩個階段。硝化過程是指在好氧條件下,在硝酸鹽和亞硝酸鹽菌的作用下,氨氮可被氧化成硝酸鹽氮和亞硝酸鹽氮;再通過缺氧條件,反硝化菌將硝酸鹽氮和亞硝酸鹽氮還原成氮氣,從而達到脫氮的目的。
傳統生物硝化反硝化法中,較成熟的方法有A/O 法、A2/O 法、SBR
序批式處理法、接觸氧化法等。它們具有效果穩定、操作簡單、不產生二次污染、成本較低等優點。但該法也存在一些弊端,如必須補充相應的碳源來配合實現氨氮的脫除,使運行費用增加;碳氮比較小時,需要進行消化液迴流,增加了反應池容積和動力消耗;硝化細菌濃度低,系統投鹼量大等。
楊小俊等〔25〕通過A/O 膜生物反應器處理某煉油廠氣浮池出水中的氨氮,實驗結果表明,當氨氮和COD 容積負荷分別在0.04~0.08、0.30~0.84 kg/(m3·d)時,處理後水中氨氮質量濃度小於5 mg/L。
2.3.2 新型生物脫氮技術
(1)短程硝化反硝化技術。短程硝化反硝化是在同一個反應器中,先在有氧的條件下,利用氨氧化細菌將氨氧化成亞硝酸鹽,阻止亞硝酸鹽進一步氧化,然後直接在缺氧的條件下,以有機物或外加碳源作為電子供體,將亞硝酸鹽進行反硝化生成氮氣。
短程硝化反硝化與傳統生物脫氮相比具有以下優點:對於活性污泥法,可節省25%的供氧量,降低能耗;節省碳源,一定情況下可提高總氮的去除率;提高了反應速率,縮短了反應時間,減少反應器容積。但由於亞硝化細菌和硝化細菌之間關系緊密,每個影響因素的變化都同時影響到兩類細菌,而且各個因素之間也存在著相互影響的關系,這使得短程硝化反硝化的條件難以控制。目前短程硝化反硝化技術仍處在人工配水實驗階段,對此現象的理論解釋還不充分。
(2)同時硝化反硝化技術。當硝化與反硝化在同一個反應器中同時進行時,即為同時硝化反硝化(SND)。廢水中溶解氧受擴散速度限制,在微生物絮體或者生物膜的表面,溶解氧濃度較高,利於好氧硝化菌和氨化菌的生長繁殖,越深入絮體或膜內部,溶解氧濃度越低,形成缺氧區,反硝化細菌占優勢,從而形成同時硝化反硝化過程。
鄒聯沛等〔26〕對膜生物反應器系統中的同時硝化反硝化現象進行了研究,實驗結果表明,當DO 為1mg/L,C/N=30,pH=7.2
時,COD、NH4+-N、TN 去除率分別為96%、95%、92%,並發現在一定的范圍內,升高或降低反應器內DO 濃度後,TN 去除率都會下降。
同時硝化反硝化法節省反應器,縮短了反應時間,且能耗低、投資省。但目前對於同步硝化反硝化的研究尚處於實驗室階段,其作用機理及動力學模型需做進一步的研究,其工業化運用尚難實現。
(3)厭氧氨氧化技術。厭氧氨氧化是指在缺氧或厭氧條件下,微生物以NH4+ 為電子受體,以NO2- 或NO3- 為電子供體進行的NH4+、NO2- 或NO3- 轉化成N2的過程〔27〕。
何岩等〔28〕研究了SHARON
工藝與厭氧氨氧化工藝聯用技術處理「中老齡」垃圾滲濾液的效果,實驗結果表明,厭氧氨氧化反應器可在具有硝化活性的污泥中實現啟動;
在進水氨氮和亞硝酸氮質量濃度不超過250 mg/L 的條件下,氨氮和亞硝酸氮的去除率分別可達到80%和90%。目前,SHARON
與厭氧氨氧化聯合工藝的研究仍處於實驗室階段,還需要進一步調整和優化工藝條件,以提高聯合工藝去除實際高氨氮廢水中的總氮的效能。
厭氧氨氧化技術可以大幅度地降低硝化反應的充氧能耗,免去反硝化反應的外源電子供體,可節省傳統硝化反硝化過程中所需的中和試劑,產生的污泥量少。但目前為止,其反應機理、參與菌種和各項操作參數均不明確。
2.4 膜技術
2.4.1 反滲透技術
反滲透技術是在高於溶液滲透壓的壓力作用下,藉助於半透膜對溶質的選擇截留作用,將溶質與溶劑分離的技術,具有能耗低、無污染、工藝先進、操作維護簡便等優點。
利用反滲透技術處理氨氮廢水的過程中,設備給予足夠的壓力,水通過選擇性膜析出,可用作工業純水,而膜另一側氨氮溶液的濃度則相應增高,成為可以被再次處理和利用的濃縮液。在實際操作中,施加的反滲透壓力與溶液的濃度成正比,隨著氨氮濃度的升高,反滲透裝置所需的能耗就越高,而效率卻是在下降〔29〕。
徐永平等〔30〕以兗礦魯南化肥廠碳酸鉀生產車間含NH4Cl 的廢水為研究對象,利用反滲透法對NH4Cl
廢水的處理過程進行了研究,實驗裝置採用反滲透膜(NTR-70SWCS4)過濾機。結果表明,在用反滲透膜技術處理氨氮廢水的過程中,氯化銨質量濃度適宜在60
g/L 以下,在該濃度條件下,設備脫氨氮效率較高,一般大於97%,各項技術指標合格,可以用於實際生產操作。
2.4.2 電滲析法
電滲析是在外加直流電場的作用下,利用離子交換膜的選擇透過性,使離子從電解質溶液中分離出來的過程。電滲析法可高效地分離廢水中的氨氮,並且該方法前期投入小,能量和葯劑消耗低,操作簡單,水的利用率高,無二次污染副產物。
唐艷等〔31〕採用自製電滲析設備對進水電導率為2 920 μS/cm,氨氮質量濃度為534.59 mg/L
的氨氮廢水進行處理,通過實驗得到在電滲析電壓為55 V,進水流量為24 L/h
這一最佳工藝參數條件下,可對實驗用水有效脫氮的結論,出水氨氮質量濃度為13 mg/L。
3 不同濃度工業含氨氮廢水的處理方法比較
不同氨氮廢水處理方法優缺點比較見表 4。
通過對以上幾種不同方法的論述,可以看出目前針對工業廢水中高濃度氨氮的處理方法主要使用物理化學方法做預處理,再選擇其他方法進行後續處理,雖能取得較好的處理效果,但仍存在結垢、二次污染的問題。對低濃度的氨氮廢水較常用的方法為化學法和傳統生物法,其中化學法的一些處理技術還不成熟,未在實際生產中應用,因此還無法滿足工業對低濃度氨氮廢水深度處理的要求;
生物法能較好地解決二次污染問題,且能達到工業對低濃度氨氮廢水深度處理的要求,但目前對微生物的選種和馴化還不完全成熟。
B. 什麼是高氨氮廢水
廢水中氨氮的構成主要有兩種,一種是氨水形成的氨氮,一種是無機氨形成的氨氮,主要是硫酸銨,氯化銨等等。
高氨氮廢水的一般的形成是由於氨水和無機氨共同存在所造成的,一般上ph在中性以上的廢水氨氮的主要來源是無機氨和氨水共同的作用,ph在酸性的條件
下廢水中的氨氮主要由於無機氨所導致。
對於高氨氮的廢水氨氮脫出形式,主要有兩種,一種是以氨水的形式回收氨氮,主要是蒸餾和吹脫兩種。這時候氨氮以氨水的形式脫出。
在這個過程中,廢水需要加熱,需要吹風,但是最主要的前提條件是氨氮需要加入液鹼或者石灰水,蒸餾法需要加入液鹼,吹脫法多用石灰水。 在大多數的氨氮的廢水中,有氨水和無機氨共同存在,主要是ph大於中性的條件下,這樣就需要加入酸,控制ph在偏酸性條件,使氨水形成的氨氮向無機氨形成的氨氮的形式轉換,最後,利用多效蒸發等手段將固體結晶出來。
對於氨氮主要以氨水的形成存在的廢水,用蒸餾的形式是可以很好的回收氨水的。此時不需要加入液鹼等,或者加入的很少的液鹼,就可以回收氨水,去除氨氮等。對於以無機氨形成的氨氮廢水,此時就要考慮,是否把氨氮以氨水的形式脫出,還是以結晶的形式脫出。主要是看廢水的氨氮的多少和氨氮的去除費用等等的問題了
C. 高氨氮廢水如何處理
高濃度氨氮廢水對微生物有一定的抑製作用,但N同時又是微生物生長的一種專不可缺少的營養元素屬。
氨氮廢水的處理主要有以下的方法:
如果氨氮超高的話,可先加氫氧化鈉調節水PH11左右,通過氨氮吹脫塔用空氣吹脫,去除率可達80%左右,當然僅僅通過這樣的方法無法處理達標,還需後續處理。剩餘的氨氮可以通過脫氮的污水處理工藝進行去除:比如說A/O、A/AO、SBR等活性污泥法,以及曝氣生物濾池生物轉盤的生物膜法進行處理。
D. 高氨氮廢水如何處理
高氨氮廢水處理方法如下:
1、吹脫法
吹脫法的基本原理是氣液相平衡和傳質速度理論。將氨氮廢水pH 調節至鹼性,此時,銨離子轉化為氨分子,再向水中通入氣體,使其與液體充分接觸,廢水中溶解的氣體和揮發性氨分子穿過氣液界面,轉至氣相,從而達到去除氨氮的目的。常用空氣或水蒸氣作載氣,前者稱為空氣吹脫,後者稱為蒸汽吹脫。
2、離子交換法
應用離子交換法處理含氨氮廢水,為常見的就是以沸石作為交換載體,提高氨氮脫除率。基於歷史實踐數據可知,每克沸石可以吸附15.5mg的氨氮,且對於粒徑在30~60目的沸石其脫除氨氮的效率可以達到78%。但是相比其他處理技術,利用沸石交換脫除工藝操作比較復雜,並且再生液為需要再次處理的高濃度氨氮廢水,因此更適用於低濃度氨氮廢水處理。
吹脫法處理氨氮技術參數
(1)吹脫法普遍適宜的pH 在11 附近;
(2)考慮經濟因素,溫度在30~40 ℃附近較為可行,且處理率高;
(3)吹脫時間為3 h左右;
(4)氣液比在5 000∶1 左右效果較好,且吹脫溫度越高,氣液比越小;
(5)吹脫後廢水的濃度可降低到中低濃度;
(6)脫氮率基本保持90%以上。盡管吹脫法可以將大部分氨氮脫除, 但處理後的廢水中氨氮仍然高達100 mg/L 以上,無法直接排放,還需要後續深度處理。
E. 高氨氮廢水如何處理
目前針對高氨氮廢水處理有折點氯化法、化學沉澱法、離子交換法、和生物脫氨法等多種方法。那麼高氨氮廢水該如何選擇處理方法呢?
化學沉澱法
化學沉澱法的基本原理是,向高氨氮廢水中投加磷化物與鎂化物生成磷酸銨鎂沉澱 ,從而達到去除氨氮的效果。
生物法
生物法脫氮技術應用非常廣泛,但是高氨氮廢水中氨氮的濃度會影響微生物活性,需要對原水進行稀釋處理。另外,消化過程需要大量的溶解氧,反硝化過程需要大量的碳源。高氨氮廢水的生物去除工藝常見的有膜生物反應器法與厭氧氨氧化法。HNF-MP高效硝化反應系統,在傳統生物硝化的基礎上對反應器結構進行改進,對進水管路做保溫措施,若來水水溫低於18度時在進水前端蒸汽換熱器進行控制,溫度維持25-30℃。通過優選菌種,獲得耐鹽,耐毒性沖擊的高活性菌種同時獨創的多級沉澱分離技術,最大限度的對硝化菌進行了富集,強化,脫氮效率是傳統技術的3倍。
化學氧化法
折點氯化法是投加過量的氯或次氯酸鈉,使廢水中的氨氮氧化成氮氣的化學脫氮工藝。
吹脫法
利用空氣通過廢水時與水中溶解氣體發生氧化反應,使水中溶解性揮發物質由液相轉入氣相,並進一步吹脫分離的水處理方法。