導航:首頁 > 污水知識 > 怎麼讓污水粒徑變大

怎麼讓污水粒徑變大

發布時間:2024-11-03 01:58:03

『壹』 確定絮凝劑在生活污水處理中的配比是多少

混凝與絮凝的比較
絮凝劑是用來提高沉降、澄清、過濾、氣浮、離心分離等工藝過程的速度和效率。絮凝過程就是懸浮液中許多單獨顆粒形成聚集體(絮團或礬花)的過程。
水處理中,混凝和絮凝代表兩種不同的機制。

混凝
水中懸浮的顆粒在粒徑小到一定程度時,其布朗運動的能量足以阻止重力的作用,而使顆粒不發生沉降。這種懸浮液可以長時間保持穩定狀態。而且,懸浮顆粒表面往往帶電(常常是負電),顆粒間同種電荷的斥力使顆粒不易合並變大,從而增加了懸浮液的穩定性。
混凝過程就是加入帶正電的混凝劑去中和顆粒表面的負電,使顆粒「脫穩」。於是,顆粒間通過碰撞、表面吸附、范德華引力等作用,互相結合變大,以利於從水中分離。
混凝劑是分子量低而陽電荷密度高的水溶性聚合物,多數為液態。它們分為無機和有機兩大類。無機混凝劑主要是鋁、鐵鹽及其聚合物。
絮凝
絮凝是聚合物的高分子鏈在懸浮的顆粒與顆粒之間發生架橋的過程。「架橋」就是聚合物分子上不同鏈段吸附在不同顆粒上,促進顆粒與顆粒聚集。
絮凝劑為有機聚合物,多數分子量較高,並有特定的電性(離子性)和電荷密度(離子度)。
實際過程要比上述理論復雜得多。由於混凝劑/絮凝劑都是高分子物質,同一產品中大大小小的分子都有,所謂「分子量」只是一個平均概念。所以,在用某一混凝劑或絮凝劑處理污水是,「電中和」和「架橋」作用會交織在一起同時發生。絮凝過程是多種因素綜合作用的結果,目前仍有一些沒有認清和解決的問題。就我們所知,絮凝過程與絮凝劑分子結構、電荷密度、分子量有關;與懸浮顆粒表面性質、顆粒濃度、比表面積有關;與介質(水)的pH值、電導、水中其他物質的存在、水溫、攪動情況等因素有關。因此盡管有理論和經驗可循,用實驗來選擇絮凝劑仍然是不可缺少的。

1、PAC(聚合氯化鋁)的溶解與使用
1) PAC為無機高分子化合物,易溶於水,有一定的腐蝕性;
2) 根據原水水質情況不同,使用前應先做小試求得最佳用葯量(具體方法可參見第2條:聚合硫酸鐵的溶解與使用-加葯量的確定);(參考用量范圍:20-800ppm)
3) 為便於計算,實驗小試溶液配置按重量體積比(W/V),一般以2~5%配為好。如配3%溶液:稱PAC3g,盛入洗凈的200ml量筒中,加清水約50ml,待溶解後再加水稀釋至100ml刻度,搖勻即可;
4) 使用時液體產品配成5-10%的水液,固體產品配成3-5%的水液(按商品重量計算);
5) 使用配製時按固體:清水=1:5(W/V)左右先混合溶解後,再加水稀釋至上述濃度即可;
6) 低於1%溶液易水解,會降低使用效果;濃度太高易造成浪費,不容易控制加葯量;
7) 加葯按求得的最佳投加量投加;
8) 運行中注意觀察調整,如見沉澱池礬花少、余濁大,則投加量過少;如見沉澱池礬花大且上翻、余濁高,則加葯量過大,應適當調整;
9) 加葯設施應防腐。
2、聚合硫酸鐵(PFS)的溶解與使用
1) PFS溶液配製
a. 使用時一般將其配製成5%-20%的濃度;
b. 一般情況下當日配製當日使用,配葯如用自來水,稍有沉澱物屬正常現象。
2) 加葯量的確定
因原水性質各,應根據不同情況,現場調試或作燒杯混凝試驗,取得最佳使用條件和最佳投葯量以達到最好的處理效果。
a.取原水1L,測定其PH值;
b.調整其PH值為6-9;
c.用2ml注射器抽取配製好的PFS溶液,在強力攪拌下加入水樣中,直至觀察到有大量礬花形成,然後緩慢攪拌,觀察沉澱情況。記下所加的PFS量,以此初步確定PFS的用量;
d. 按照上述方法,將廢水調成不同PH值後做燒杯混凝試驗,以確定最佳用葯PH值;
e. 若有條件,做不同攪拌條件下用葯量,以確定最佳的混凝攪拌條件;
f. 根據以上步驟所做試驗,可確定最佳加葯量,混凝攪拌條件等。
注意混凝過程三個階段的水力條件和形成礬花狀況。
a) 凝聚階段:是葯劑注入混凝池與原水快速混凝在極短時間內形成微細礬花的過程,此時水體變得更加渾濁,它要求水流能產生激烈的湍流。燒杯實驗中宜快速(250-300轉/分)攪拌10-30S,一般不超過2min。
b) 絮凝階段:是礬花成長變粗的過程,要求適當的湍流程度和足夠的停留時間(10-15min),至後期可觀察到大量礬花聚集緩緩下沉,形成表面清晰層。燒杯實驗先以150轉/分攪拌約6分鍾,再以60轉/分攪拌約4分鍾至呈懸浮態。
c) 沉降階段:它是在沉降池中進行的絮凝物沉降過程,要求水流緩慢,為提高效率一般採用斜管(板式)沉降池(最好採用氣浮法分離絮凝物),大量的粗大礬花被斜管(板)壁阻擋而沉積於池底,上層水為澄清水,剩下的粒徑小,密度小的礬花一邊緩緩下降,一邊繼續相互碰撞結大,至後期余濁基本不變。燒杯實驗宜以20-30轉/分慢攪5分鍾,再靜沉10分鍾,測余濁。
表1:PFS適用范圍及參考用量
名稱 參考用量 名稱 參考用量
生活飲用水 1:20000-1:200000 紙箱廠廢水 1:5000-1:10000
工業用水 1:20000-1:200000 機加工乳化油廢水 1:5000-1:12000
城市污水 1:10000-1:50000 化工廢水 1:3000-1:10000
電廠廢水 1:10000-1:30000 油田鑽井廢水 1:3000-1:10000
洗煤廢水 1:10000-1:30000 造漆廢水 1:3000-1:8000
鋼鐵工業廢水 1:10000-1:20000 洗毛廢水 1:2000-1:8000
有色選礦廢水 1:8000-1:20000 製革廢水 1:2000-1:6000
冶金選礦廢水 1:8000-20000 印染廢水 1:2000-1:6000
食品工業廢水 1:8000-1:20000 造紙廢水 1:2000-1:6000
電鍍廢水 1:5000-1:10000 污泥脫水 1:100-1:1000
註:上表為參考用量,具體用量應該通過實驗確定。
3) PFS的投加
a. 根據燒杯混凝試驗結果,調整廢水PH值和攪拌條件;
b. 根據水量大小,調整加葯泵流量,按所確定的加葯比例投加;
c. 實際加葯量可能與燒杯混凝試驗有些差異,根據處理水質情況調整;
d. 若配合使用有機高分子絮凝劑如PAM,可取得更佳效果;
e. PAM加葯量一般為2ppm左右。
3、聚丙烯醯胺(PAM)的溶解與使用
1) PAM是有機高分子化合物,可分為陰離子型,陽離子型和非離子型,為白色粉末或顆粒,可溶於水,但溶解速度很慢;
2) 陰離子型一般用於廢水處理絮凝劑,陽離子型一般用於污泥脫水;
3) 作為絮凝劑時用葯量一般為1-2ppm,即每處理1噸廢水用葯量約為1-2g;
4) 使用時陰離子型一般配製成0.1%左右的水溶液,陽離子型可配製成0.1%-0.5%;
5) 配製溶液時應先在溶解槽中加水,然後開啟攪拌機,再將PAM沿著漩渦緩慢加入,PAM不能一次性快速投入,否則的話PAM會結塊形成「魚眼」而不能溶解;
6) 加完PAM後一般應繼續攪拌30min以上,以確保其充分溶解;
7) 溶解後的PAM應盡快使用,陰離子型一般不要超過36h,陽離子型溶解後很容易水解,應24h內使用。

ST絮凝劑特性:
ST絮凝劑是種新型的水溶性高分子電解質。它具有離子度高、易溶於水(在整個PH值范圍內完全溶於水,且不受低水溫的影響)、不成凝膠、水解穩定性好等特點,由於ST絮凝劑的大分子鏈上所帶的正電荷密度高,產物的水溶性好,分子量適中,因此具有絮凝和消毒的雙重性能。它不僅可有效地降低水中懸浮物固體含量,從而降低水的濁度:而且還可使病毒沉降和降低水中三鹵甲烷前體的作用,因而使水中的總含碳量(TOC)降低。ST絮凝劑可作為主絮凝劑和助凝劑使用(其用量0.5-0.7PPM相當於明礬50~60PPM),對水的澄清有明顯的效果,特別是對低濁度水的處理,更是其它類型的高分子絮凝劑所不及。ST絮凝劑與傳統使用的無機絮凝劑(如硫酸鋁、鹼式氯化鋁等)相比,具有產生的淤泥量少,沉降速度快水質好,成本低等特點,而且還可採用直接過濾的新工藝,這對傳統的上水處理無疑是一個重大改革。
ST絮凝劑產品的技術指標為:
外觀:無色或淡黃色粘稠液體
含量:≥30%(m/m)
特性粘度:≥40%(m1/g)
離子度:≥50%(m/m)
2、ST絮凝劑的使用方法:
ST絮凝劑可單獨使用,或與硫酸鋁、鹼式氯化鋁復合使用。復合使用時、可減少無機絮凝劑添加量,並大大減少產生的污泥量。
ST絮凝劑的最佳使用濃度是使Zate電位零或接近於零時用量。當用量過多時,反而起分散作用。
ST絮凝劑單獨使用時,其加葯量范圍為0.2-10ppm。
ST絮凝劑在低溫貯存時,將使膠體或液體凍成冰塊,影響它的絮凝活性。因此,應在0-32℃之間貯顧為宜。
ST絮凝劑應可能用中性不含金屬鹽的水來配製貯備液。貯備液一般配成1%、0.5%或0.1%的液體。與其它高分子絮凝劑一樣,ST絮凝劑在剪切力較高的高速攪拌下,將會被切斷分子鏈,從面降低絮凝劑性能。因此,溶解、輸送和絮凝過程,都不要使用較高速度的旋轉攪拌機和離心泵。一般溶解和絮凝時可用吹入空氣或用約100轉/分低速的螺旋式攪拌為宜。輸送則盡可能利用位差或排液泵為宜。
ST絮劑的效果與加入方法有很大關系,為使ST絮凝劑與懸浮物能充分混勻,絮凝劑應盡可能稀釋並多次加入。
為了使ST絮凝劑的分子鏈既不被剪斷,同時又能與處理體系充分混合,可採用:(一)在處理物流動管中多次分散加入ST絮凝劑;(二)用壓縮空氣攪拌;(三)用螺旋槳攪拌器在100轉/分低速下進行。形成絮凝塊後,便要避免攪拌。
3、ST絮凝劑廣泛應用於凈水、破乳、造紙雙元助留、造紙漿液陰離子雜質消除等領域。

『貳』 污水處理中是顆粒物越大處理越好嗎

從宏觀角度來講 越到當然越好處理 污染物都是大的漂浮物直接用格柵處理 別的什麼都專不用了
顆粒越大一般沉澱越好屬 污染物都是沉澱性能較好的大可以物質直接沉澱就好了

但是污水中大部分難處理還是懸浮物 他們在水中不能自由沉澱只能通過化學 生物 物理的方法使得他沉澱下來去除掉

『叄』 污水處理在什麼情況下會發生污泥解體有什麼指示菌種嗎

廢水生物處理是利用有關微生物的代謝過程,是對廢水中有機物進行降解或轉化的過程。微生物在降解有機物的同時其本身也得到了增殖。污泥膨脹有兩種類型,一是由於活性污泥中大量絲狀菌的繁殖而引起的污泥絲狀菌膨脹,二是由於菌膠團細菌體內大量累積高粘性物質(如葡萄糖、甘露糖、阿拉伯糖、鼠李糖和脫氧核糖等形成的多類糖)而引起的非絲狀菌性膨脹。

污泥絲狀菌膨脹可根據絲狀微生物對環境條件和基質種類要求的不同而劃分為五類類型:

(1)低基質濃度型;

(2)低溶解氧濃度型;

(3)營養缺乏型;

(4)高硫化物型;

(5)pH不平衡型。

在實際運行中,一般以污泥絲狀菌膨脹為主,佔90%以上。發生污泥膨脹時,主要有以下特徵

(1)二沉池中污泥的SVI值大於200ml/g;

(2)迴流污泥濃度下降;

(3)二沉池中污泥層增高。


污泥膨脹相關理論:

(1)A/V假說:當混合液中基質收到限制或控制時,由於比表面積大的絲狀菌獲取基質的能力要強於菌膠團,因而菌膠團受到抑制,絲狀菌大量繁殖;

(2)動力選擇性理論:以微生物生長動力學為基礎,根據不同種類微生物具有不同的最大比生長速率和飽和常數,分析絲狀菌與菌膠團的競爭情況;

(3)飢餓假說:將活性污泥中微生物分為三類,第一類是菌膠團細菌,第二類是具有高基質親和力但生長緩慢的耐飢餓絲狀菌,第三類是對溶解氧有高親和力、對飢餓高度敏感的快速生長絲狀菌;

(4)存儲選擇理論:在底物風度的狀態下,非絲狀菌具有貯存底物的能力,而被貯存物質在底物匱乏時能夠被代謝產生能量或合成蛋白質。但是一些絲狀菌也具有底物貯存能力,底物貯存能力不能完全用來解釋污泥膨脹機理;

(5)氮氧化氮假說:CASEY提出低負荷生物脫氮除磷工藝的污泥膨脹假說,如果缺氧區的反硝化不充分,導致好氧區存在亞硝酸氮,那中間產物NO、N2O就會抑制菌膠團的好氧細胞色素,進而抑制其好氧情況下的基質利用,相反一些絲狀菌只能將硝酸氮還原為亞硝酸氮,因此不會在反硝化條件下胞內積累NO和N2O,絲狀菌就不會在好氧段被抑制,因而更具競爭優勢。亞硝酸與SVI有一定的正相關性。沉澱性能良好的污泥粒徑分布較廣,且以球菌為主,膨脹污泥的粒徑大都在10μm以內,污泥較為細碎。


影響污泥膨脹的因子:

1、溫度

低溫有利於絲狀菌生長,Daigger等人發現10℃容易導致絲狀菌性污泥膨脹,而污水溫度提高到22℃則不容易產生污泥膨脹現象;

2、pH 值

活性污泥微生物適宜pH范圍為6.5~8.5,pH小於6時,菌膠團活性減弱,生長受到抑制,但絲狀菌能大量繁殖,取代菌膠團成為優勢種群,污泥的沉降性能明顯變差並發生污泥膨脹。pH值低於4.5時,真菌完全占優勢。

3、DO

低DO是引起絲狀菌污泥膨脹的主要原因之一,若DO成為限制因子,菌膠團生長受抑制,而絲狀菌因具有巨大的比表面積,更易獲得溶解氧進行生長繁殖,在競爭中處於優勢地位。具有低Ks的絲狀菌在低基質濃度下,具有比菌膠團高的比生長速率,這可以解釋基質限制、溶解氧限制和營養物質限制引起的污泥膨脹現象。只要溶解氧成為限制,任何負荷下都會發生污泥膨脹。污水處理中DO控制在2左右,太高太低都容易引起污泥膨脹。

4、F/M

低負荷情況下,由於絲狀菌具有巨大的比表面積,低Ks,其對碳源有較強的親和力,優先利用碳源,造成競爭優勢。低F/M經常出現在完全混合式曝氣池、大迴流比的氧化溝(如卡魯薩爾氧化溝)、沿程分散進水曝氣池中;低負荷容易引發絲狀菌污泥膨脹,高負荷容易引發污泥粘性膨脹。負荷分布不均,好氧區一直處於低負荷運行狀態易造成絲狀菌大量增殖。

Li等人對膜生物反應器內污泥負荷參數的影響研究表明,當F/M<0.2kg/kg.d時,容易引發污泥膨脹;Pan和Su等人將污水通過好氧選擇器進入膜生物反應器,將F/M調整到0.4kg/kgd,有效的控制了污泥膨脹;而Laitinen和Luonis等人則是利用缺氧選擇器,加強反硝化除磷作用,有效解決了污泥膨脹。

高有機負荷下,反應器內底物充裕,在這種情況中菌膠團比絲狀菌具有更強的吸附與存貯營養物質的能力,能夠充分利用高濃度的底物迅速增殖,具有較高的比生長速率,抑制了絲狀菌的生長,但是如果DO濃度不夠,在0.5mg/L以下,菌膠團在低溶氧的條件下增殖受到抑制,而絲狀菌由於其具有更大的比表面積,即使在低溶氧的條件下也能獲得氧,其增殖速率明顯高於菌膠團,發生高負荷低DO下的污泥膨脹;低負荷下由於長時間缺少足夠的營養物質,菌膠團生長受到抑制,而絲狀菌具有較大的比表面積,其菌絲會從菌膠團中伸展出來以增加其攝取營養的表面積。

由於研究者的研究背景和研究條件不盡相同,研究結果也很不一致尤其是關於有機負荷與污泥膨脹關系的說法也比較混亂。高低有機負荷都可能引起污泥膨脹,Ford和Eckenfeilder等人發現高低負荷下都可能發生污泥膨脹,Palm等人認為根據負荷不同,在任何DO濃度條件下都可能發生膨脹,Chudoba等人認為即使對於推流式曝氣池,雖然沿吃長方向存在著高的濃度梯度,但在高負荷下也會發生污泥膨脹。

5、N、P營養物質

通常認為污水中BOD5:N:P=100:5:1為微生物的適宜比例。N、P含量不均衡的廢水,會引發絲狀菌與非絲狀菌膨脹,絲狀菌膨脹:有研究發現在缺N的情況下,由於絲狀菌具有巨大的比表面積,低Ks,其對N、P等營養物質有較強的親和力,優先利用營養物質,造成競爭優勢;非絲狀菌污泥膨脹:BOD5/N為100:3時,菌膠團未能有充分的N完成代謝,於是把有機物以高親水性的多糖胞外聚合物(EPS)的形式貯存在胞外。因此要降低進水C/N比。

6、微量元素

完全混合活性污泥法會助長絲狀菌的過量生長,這可用痕量金屬缺乏症理論分析。由於絲狀菌具有比菌膠團更大的比表面積,其在痕量金屬含量不足時比後者具有更大的對痕量金屬的吸附能力,從而抑制了菌膠團的生長。

7、有毒物質

當有毒工業廢水進入污水廠時,活性污泥中的微生物要出現中毒現象,Novak在對非絲狀菌膨脹的研究中發現,菌膠團吸收污水中的有毒物質後,粘性物質分泌減少,生理活動出現異常,可能引起污泥膨脹。


污泥膨脹解決辦法:

1、應急措施:

(1)增加絮凝劑,如投加硅藻土、粘土、厭氧污泥、金屬鹽類、混凝劑,如投加鐵鹽(氯化亞鐵5~50mg/L)、鋁鹽(礬土10~100mg/L)。

(2)採用消毒氧化劑,如採用迴流污泥加氯措施,投加量一般為2~10kgCl2/1000kg干污泥,既可控制曝氣池污泥膨脹也可對二級處理出水消毒,同時使控制污泥膨脹所需要的加氯量最少。銅離子濃度在0.75mg/L時或食鹽濃度為4g/L時對抑制絲狀菌污泥膨脹效果良好。但是此法治標不治本。

2、改變工藝

(1)設置選擇器,選擇器是曝氣池之前或前段設定的高有機負荷區(接觸區),為菌膠團細菌提供高濃度的可吸收的溶解底物,以提高其攝取和貯存能力,使其在與絲狀菌的競爭中處於優勢。

(2)此外改變反應器形式,如將完全混合曝氣池改為推流式曝氣池,連續進水改為間歇進水。絲狀菌幾乎都不能在完全無分子氧的環境中吸收底物,這使得通過脫氮和除磷過程而利用底物的功能菌迅速增殖,所以A/O和A/A/O系統能有效控制絲狀菌污泥膨脹。在A2/O工藝中,厭氧、缺氧區不利於絲狀菌增殖,如果在好氧段能旁流一部分進水提供碳源,則絲狀菌在整個系統中都處於不利狀況。

(3)工藝運行調控:由於污水腐化產生的膨脹,可以對消化污水預曝氣,沉澱池中污泥應及時刮除;N、P缺乏的污水,可及時投加尿素、銨鹽、化肥或與生活污水混合,使BOD5:N:P=100:5:1左右;缺氮時可從污泥消化池往曝氣池投加高含氮污泥上清液;低溶解氧可以增加供氧,採用表面轉刷曝氣的氧化溝,欲提高DO,可通過提高出水堰的高度,以提高轉刷的吃水深度的方法,強化轉刷的曝氣能力;低負荷導致的污泥膨脹,可以適當提高F/M;高負荷污泥膨脹,可射流曝氣剪切絲狀菌,射流高的傳質效率提供充足的溶解氧。增加水力剪切力:通過曝氣時產生的強水力剪切作用使蓬鬆污泥自聚、密實,同時使絮團表面不穩定的絲狀菌脫落。

(4)在完全混合曝氣池中負荷0.1~0.5kgBOD5/(kgMLSSd)都發生膨脹,而推流式中污泥負荷大於0.5kgBOD5/(kgMLSSd)才發生膨脹,而間歇式反應器內沒有發現膨脹現象;變化的水力負荷造成SVI上升,具體分析為高負荷、低溶解氧刺激了絲狀菌的生長,且絲狀菌生長的不可逆性,造成污泥膨脹,特別是當有機物濃度劇增時極易引起污泥膨脹;污泥有機負荷為0.5kg/kgd,並且DO在2mg/L時,可以有效的控制絲狀菌的生長。

(5)低負荷引起污泥膨脹的恢復:加大污泥負荷,利用在高底物濃度的環境條件下,菌膠團的貯存能力與最大比生長速率均比絲狀菌的高這一特點,在反應器中創造出有利於菌膠團生長繁殖的生態環境,使其取代絲狀菌逐漸成為污泥中的優勢菌種,從而使發生膨脹的污泥逐漸恢復正常。

(6)增大污泥迴流量有利於提高菌膠團細菌攝取有機物的能力並且增大與絲狀菌的競爭力度,抑制絲狀菌的膨脹。絲狀菌的生長速率小於非絲狀菌,長SRT有利於絲狀菌的生長,因而增加排泥量,可以有效排除池內過多絲狀菌。並且長泥齡情況下,發生污泥老化,老化的污泥活性不夠,競爭不過絲狀菌,會使絲狀菌在競爭中處於優勢地位。

3、污泥膨脹自然消除的原因:污泥膨脹導致污泥的大量流失,使MLSS濃度降低,其結果是在其它條件不變時,有機負荷提高,DO上升,OUR減小,這都有利於抑制絲狀菌的增殖。


其他污泥膨脹原因

1、一般認為懸浮固體少而溶解性和易降解的有機物較多,特別是含低分子量的烴類、糖類和有機酸等容易發生絲狀菌膨脹,例如啤酒、食品、乳品、造紙廢水;絲狀菌對高分子物質的水解能力弱,較難吸收不溶性物質,對低分子有機物可直接作為能源加以利用,最有代表性的絲狀菌是球衣菌屬,它能將葡萄糖、蔗糖、乳糖等糖類物質直接利用,當廢水中含有可溶性有機物多時,易誘發絲狀菌膨脹,而不溶性有機物作為去除對象的廢水則不易產生污泥膨脹。Van等發現葡萄糖、乙酸鹽這些低分子可溶性有機物容易引起污泥膨脹,而大分子澱粉不易引起污泥膨脹;

2、腐化的污水,還有大量硫化氫的污水,污水在下水管和初沉池等貯存設施中,停留時間過長,發生早起消化,使pH下降,產生利於絲狀菌攝取的低分子溶解性有機物和硫化氫,引起硫代謝絲狀菌。但是硫化氫大部分是厭氧發酵中的副產物,而厭氧發酵會產生大量小分子有機酸,這些是污泥膨脹的主要原因;

3、一些厭氧裝置雖然出水含有大量硫化氫,但是揮發性有機酸濃度很低時也不會發生污泥膨脹,當揮發性有機酸達到一定濃度時,其中主要的低分子有機酸(乙酸、丙酸)易於降解,因此造成耗氧速率的增加,引起DO限制膨脹。

詳情請參考:《污泥膨脹原因和解決辦法》

http://tyh.1.blog.163.com/blog/static/7414591020145173347324/

『肆』 污水處理中SS里有多少COD

可能你不知道水處理中常用的一些字元所代表的意思,COD、BOD、SS是檢測水質版的指標之一,COD指的是化學權需氧量,通常檢測方法是將污水置於酸性條件下,用強氧化劑重鉻酸鉀將污水中的有機物氧化成二氧化碳(CO2)和水(H2O)。 BOD指生化需氧量,指定的溫度和時間段內,在有氧條件下由微生物(主要是細菌)降解水中有機物所需的氧量。 SS指的就是污水中懸浮物,顆粒粒徑在0.1~1.0μm之間者稱為細分散懸浮固體;顆粒粒徑大於1.0μm者稱為粗分散懸浮固體。這三種都是有各自檢測辦法的。

閱讀全文

與怎麼讓污水粒徑變大相關的資料

熱點內容
水處理離子交換器順序 瀏覽:765
龍華新區水處理 瀏覽:748
睿彩怎麼換機油濾芯 瀏覽:612
污水中的磷含量的測定方法 瀏覽:225
惠南鎮污水處理廠在哪裡 瀏覽:768
志高凈水器店在哪裡 瀏覽:581
小米空氣凈化器怎麼清洗圖示 瀏覽:69
中空纖維超濾膜現在主要 瀏覽:292
沁園凈水器ro膜的作用 瀏覽:41
污水凝聚物如何處理 瀏覽:878
熒光材料廢水 瀏覽:781
何時用減壓蒸餾 瀏覽:445
飲水機不計入固定資產計什麼科目 瀏覽:21
凈水器沒有3c怎麼辦 瀏覽:725
脲醛樹脂pp板有什麼不同 瀏覽:687
華羿空氣凈化器怎麼清洗 瀏覽:419
用150字蓋概西遊記每一回 瀏覽:436
什麼是下過濾 瀏覽:177
福田福瑞達空調濾芯在哪裡 瀏覽:762
PVB樹脂隔離 瀏覽:992