⑴ 如何提高污水處理到滿負荷
污水的處理負荷一般是指污水處理系統對於進入的污水能夠穩定達標的前提下,內所處理的污水量,或污染容物的總量。
譬如某污水廠設計2000m3/d,進水COD1000mg/L,而實際上來水是1000m3,來水COD2000多,如果處理出水穩定達標,也可以說該系統已達到了滿負荷。
當然這個滿負荷是相對的,設計人員設計說明上會提一下污水處理單元中微生物的有機負荷是多少,池內微生物的濃度是多少,如果你在運行中,通過管理,提高了池內的生物量,提高了它的處理能力,也完全可以超負荷運轉。
一般的設計指標都是運行比較穩定的參數,再高或者低一些,也未嘗不可。
————————————————————————————
在負荷的提高過程中,逐漸提高生物量,以及單元去除能力,逐漸增加處理污水量,這個過程就是調試的過程。這個調試的指標是出水水質合格,出水穩定,就可以慢慢增加污水負荷,直到滿負荷運轉。
⑵ 浮選技術在含油污水處理的應用進展進程
1浮選法的分類及浮選凈化含油污水的常用方法
在污水凈化中,根據水中形成氣泡的方式和氣泡大小。可將浮選法分為4種類型,即溶氣氣浮法,誘導氣浮法、電解氣浮法和化學氣浮法。其中常用的方法有如下幾種:加壓溶氣氣浮法、葉輪式氣浮法和噴射式氣浮法。
1.1溶氣浮選法
溶氣浮選法可分為全流加壓式、迴流式、部分原水式和壓氣式4種,全流加壓式溶氣浮選法的溶氣量大,所需浮選池的容積小,在油田污水處理中應用較廣泛;迴流式溶氣浮選法是部分凈化的水迴流到溶氣罐加壓溶氣,然後與來液一起進浮選池,因此,可在原水需要預先混凝和原水含油量比較高的情況下使用;部分原水式溶氣浮選法與全流加壓式溶氣浮選法類似,比較適合處理含油量較低的油田污水;壓氣式溶氣浮選法是通過多孔圓盤、多孔板或一種特殊的噴嘴,把氣體壓人液體中的,比其它幾種溶氣浮選工藝的停留時間短。
1.2葉輪浮選法
葉輪氣浮法是依靠高速旋轉的葉輪來產生微小的氣泡。氣泡是被機械混合到含油污水中形成的,停留時間短,除油率高,造價低,適應來水含油量的變化。WEMCO公司生產的葉輪浮選機已被廣泛應用,運行效果良好。國內的一些大油田,如遼河油田、勝利油田、新疆油田等相繼引進了這種浮選機[2]。但是,葉輪浮選機存在著製造、維修麻煩,能耗較高。為了克服此浮選機的缺點,出現了射流浮選裝置。
1.3射流浮選法
射流浮選法是利用噴射泵的原理,採用污水或凈化水為噴射流體,當水從噴嘴高速噴出時,在噴嘴的吸入室形成負壓,氣體被吸人吸入室,水高速通過混合段時,攜帶的氣體被剪切成微細氣泡;在浮選室,氣泡上浮,並附著在油珠和固體顆粒上,將其帶至水面。液氣射流泵代替了旋轉葉輪,這樣可用一個水泵提供動力,大大節省了能耗,僅相當於葉輪浮選的二分之一產生氣泡直徑小,且製造安裝、維修方便,操作安全,具有很大的研究和應用前景。但到目前為止,國內在射流浮選裝置方面還沒有系統的研究。
2浮選法凈化含油污水中各種因素的影響
影響除油效果的因素有很多,如所用氣體的氣泡尺寸、油滴尺寸、污水的礦化度oH值、表面活性劑和進口含油濃度等,在這些因素中有的是在設計浮選裝置時確定的,有的則為待處理水的特性。其中氣泡直徑、氣體濃度和油珠直徑是影響浮選除油效率的主要因素。在浮選分離室內,水中懸浮顆粒能被氣泡夾帶上浮分離,要滿足以下條件:
①粒與氣泡有機會碰撞接觸,且當接近到一定距離時,各自所具有的能量足以克服因表面電荷而形成的能壘,兩者才有可能進一步靠攏;
②互相靠攏的顆粒與氣泡,必須能擠破兩者之間的水膜,顆粒才有可能進人氣泡;
③進人氣泡的顆粒其大部分體積必須能粘附在氣泡內,顆粒才能隨氣泡一起浮升。
含油污水中由於油滴與氣泡表面均帶負電荷而在其周圍形成雙電層,只有當二者所具有的能量能克服由雙電層所培卜形成的能壘,二者接近時才能實際接觸而形成有效碰撞。其有效碰撞強度由絮體表面的疏水性、氣泡大小及水力條件決定。絮體表面的疏水性越強、氣泡越小,其粘附率越高。陽離子型、具有破乳和起泡作用的復合制劑,可以起到壓縮雙電層,增大細小油滴絮凝聚結能力,與配鎮穗油滴表面具有很大親和力,減少氣泡直徑,增大氣泡密度的作用。
3浮選技術處理含油污水的研究進展及展望
3.1浮選裝置的研究進展
隨著對浮選過程和機理研究的深入,原浮選裝置存在的問題也越來越明顯,因而改善浮選裝置的處理效果就成為研究的中心問題,如浮選池的結構已由方型改為圓形減少了死角、採用溢流堰板排除浮渣而去掉機械刮泥機構。近年來除了改進原有的浮選裝置提高除油率外,還研究了一些新型裝置——浮選柱處理含油污水。
石油大學馮鵬邦等用浮選柱處理含油污水,在實驗裝置上研究了其結構參數和操作參數對浮選性能的影響,研究結果表明:浮選柱是一種具有高效、節能等優點的含油污水處理裝置,除油率在90%左右,處理1m3污水能耗為0.11kw/h,比從國外引旅運進的WEMCO充氣浮選機能耗低50%,成本僅為WEMCO浮選機的1/5,2台浮選柱的處理能力與1台WEMCO浮選機相當。
Rainder用浮選柱回收乳狀液中的油,試驗結果表明:對給定的送液量,隨送液量濃度的增加,油回收率下降,但產品里的油濃度增加;隨氣體流量增加,油回收率增加;隨表面活性劑的增加,油回收率下降。
XuqingGu設計了一種新型的多級環流浮選柱,減輕了浮選中的霧沫夾帶和返混問題,與常規浮選柱相比,分離效率顯著提高。
北京科技大學浮選柱研究組研製的適用於高效處理微細粒礦漿的LHJ型浮選柱用於處理勝利油田采出液廢水,結果表明:其除油、除雜效率達97%左右。新型短柱體LHJ浮選柱的特點是:①粒子和氣泡的碰撞是在下導管中進行的,分離過程在柱體內進行,實現了紊流碰撞礦化,靜態分離的良好條件;②採用水射流技術,使礦漿與氣體混合得更充分,動力學損失減少,下導管內吸氣量增加;③使用了平衡管,使下導管完全充滿,充分地利用了下導管的有效高度;④下導管內液面平穩,吸氣量穩定,生產操作控制簡易可靠,是一種有發展前途的高效除油設備。有含油污水需要處理的單位,也可以到污水寶項目服務平台咨詢具備類似污水處理經驗的企業。
3.2浮選中配套葯劑的研究進展
浮選處理中所採用的葯劑包括混凝劑和浮選劑,它們直接影響著浮選處理的水質。Richard.G、Luthry等人在溶氣浮選法處理煉油廠乳化油的試驗中發現,在所有的陰離子型、陽離子型和非離子型的絮凝劑中,陽離子型絮凝劑WT2640的處理效果最佳。該絮凝劑是一種液態的共聚物,具有較高的正電荷,其中含有75%的PDADMA(聚乙M烯M甲基胺),在對兩種混凝形式的浮選試驗中發現,浮選前加人有機絮凝劑,可大大地改善浮選效果。楊旭等對葉輪浮選機用浮選劑進行了研究,由陽離子聚合物和表面活性劑(潤濕反轉劑、氣泡劑)復配後,其絮凝能力強、絮粒與氣泡粘附力強、油水分離速度快。去濁率達到90%左右。
用於處理含油污水的絮凝劑和浮選劑配套葯劑的發展趨勢是:由單一的無機混凝劑、有機絮凝劑發展為復合型或復配型的制劑,一次完成破乳、混凝。絮凝及浮選等環節。
3.3浮選機的浮選機理研究進展
在浮選機理的研究中,探討了浮選過程各種因素對處理效果的影響,為合理地改進浮選處理工藝。確定正確的設計方法提供了理論依據。C.W.Burkhardt」『在研究葉輪浮選的反應機理時發現,在其它條件不變時,油的濃度隨時間的變化,可用一級反應動力學方程式來表達。對於單級葉輪浮選,其表達式為:
dc/dt=-kc即lnc0/ct=kt
式中:C—污染物的濃度,mg/L;
C0—t=0時污染物的濃度,mg/L;
Ct—t=0時污染物的濃度,mg/L;
k—速度常數,h-1;
t一系統總的有效停留時間,h。
實際上使用的是多級葉輪浮選,一般為四級葉輪浮選,它的表達式為:
/c0=(1 kt/4)-1
式中:—四級葉輪浮選最終出水的污染物含量,mg/L
Niel.J.M.Van.ham等人在研究利用多孔板和單孔板分布器的誘導浮選法處理含油乳化液的試驗中發現,油的去除率也可成功地用一級反應動力學模型來表示,其速度常數為2~60h-1,宮原敏郎等人研究結果也認為可用一級動力學模型來表示。
然而,對於誘導式葉輪浮選機,利用上式擬合所得的油濃度與實測所得油濃度相差很大,許多點超過工程允許誤差范圍,模型不太合適,所以,在建立動力學模型時應考慮無法脫除的那部分油的影響。石油大學鄭遠揚在對誘導式葉輪浮選機理研究的基礎上,提出了一個修正模型,即:
dc/dt=-k(c-cl)
式中:CL一脫油極限濃度,即浮選分離無法脫除的溶解油和微滴分散油濃度,mg/L;
k—浮選速度常數,h-1
對於間歇式誘導式葉輪浮選機
C=(C0-Cl)exp(-kt)+Cl
3.4浮選技術在油田含油污水處理中的應用展望
由於油田含油污水的含油量不同,外觀上也不相同,油越多,顏色越深。原油以顆粒狀態不穩定地存在於污水中,形成水包油的狀態,總的含油量在2000-5000mg/L。含油污水中的油以五種狀態存在,其中浮油(直徑大於100μm)占總含油量的30%左右,它很容易從污水中分離出來;分散油(直徑在10-100μm)約占含油量的63%,它也可以依靠重力從污水中分離出來,但分離速度較慢;乳化油(直徑在0.1-10μm)約佔4%,它的分散度較高,很難靠重力進行油水分離;溶解油、油濕固體含量甚微。目前,含油污水已經成為油田注水的主要水源,針對這種水質並通過對浮選技術理論的分析,可以肯定浮選技術在油田含油污水處理中有廣泛的應用前景。
①在污水處理流程中應用浮選技術,可以提高污水的處理效果,使處理後的水質達到油層注水水質的標准。
②用浮選技術部分或全部代替自然除油、斜板除油和混凝除油技術,可簡化污水處理流程,減少污水處理費用。浮選技術用於處理分散油滴粒徑較小、原油比重大、乳化嚴重的含油污水時,具有明顯的優勢。
③應該強調的是浮選技術的好壞,取決於所用浮選設備及所用的配套葯劑。因此應加強研製開發成本低、結構簡單、佔地面積小、操作維修方便的高效浮選除油設備及配套葯劑的開發。由於新型浮選柱的特點,它有望在含油污水處理中發揮更大的作用。根據含油污水水質的差異,有針對性的開發適應性強、高效、復配性好、多功能、價廉的葯劑仍將是研究者們的一個主要目標。
④為提高處理水的水質,油田污水浮選處理工藝還要與其它污水處理方法結合採用。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
⑶ 污水處理工藝設計工程師的分級和具備哪些知識及能力
(1)一級工,要有一個認真(認真非常關鍵,否則絕對不是一個好設計師)負責回的態度,要有一般工科最答好是化工、環保類的基礎知識;
(2)二級工(在上一級的水平上,下同),要掌握各類水處理技術的知識,特別是常用技術;
(3)三級工,了解各種污水處理設備的基本性能;
(4)四級工;熟練掌握各種水力學生物動力學的計算方法;
(5)五級工,了解各種基本材料和葯劑的特點,精通各類水處理設備的構造;
(6)六級工,了解電氣、自控、機械、化驗等有關知識;
(7)七級工,能夠將各類知識融會貫通,善於專研,學會與人進行交流,有較好的文學功底;
(8)八級工,有較高的生活興趣,有自己的業余愛好,樂於助人,從哲學的角度分析和處理各種問題
⑷ 在污水處理過程中氨氮濃度過高會對硝化菌有抑製作用。請各位專家指點迷津,說說它的抑制機理。在此感激不
本人認為主要是硝化細菌對氨氮的耐受度問題,在硝化過程中,氨氮被轉化為硝酸氮,氨氮對於硝化細菌來說是一種養分,但是超過一定的度就不行了,從文獻上來看你所要找得很貼切的答案比如說反應動力學、細胞生理學上的研究沒有找到。基本都是在用大於100MG/L,就會抑制反應這個事實。等待高手出現...
⑸ 污水處理在什麼情況下會發生污泥解體有什麼指示菌種嗎
廢水生物處理是利用有關微生物的代謝過程,是對廢水中有機物進行降解或轉化的過程。微生物在降解有機物的同時其本身也得到了增殖。污泥膨脹有兩種類型,一是由於活性污泥中大量絲狀菌的繁殖而引起的污泥絲狀菌膨脹,二是由於菌膠團細菌體內大量累積高粘性物質(如葡萄糖、甘露糖、阿拉伯糖、鼠李糖和脫氧核糖等形成的多類糖)而引起的非絲狀菌性膨脹。
污泥絲狀菌膨脹可根據絲狀微生物對環境條件和基質種類要求的不同而劃分為五類類型:
(1)低基質濃度型;
(2)低溶解氧濃度型;
(3)營養缺乏型;
(4)高硫化物型;
(5)pH不平衡型。
在實際運行中,一般以污泥絲狀菌膨脹為主,佔90%以上。發生污泥膨脹時,主要有以下特徵:
(1)二沉池中污泥的SVI值大於200ml/g;
(2)迴流污泥濃度下降;
(3)二沉池中污泥層增高。
污泥膨脹相關理論:
(1)A/V假說:當混合液中基質收到限制或控制時,由於比表面積大的絲狀菌獲取基質的能力要強於菌膠團,因而菌膠團受到抑制,絲狀菌大量繁殖;
(2)動力選擇性理論:以微生物生長動力學為基礎,根據不同種類微生物具有不同的最大比生長速率和飽和常數,分析絲狀菌與菌膠團的競爭情況;
(3)飢餓假說:將活性污泥中微生物分為三類,第一類是菌膠團細菌,第二類是具有高基質親和力但生長緩慢的耐飢餓絲狀菌,第三類是對溶解氧有高親和力、對飢餓高度敏感的快速生長絲狀菌;
(4)存儲選擇理論:在底物風度的狀態下,非絲狀菌具有貯存底物的能力,而被貯存物質在底物匱乏時能夠被代謝產生能量或合成蛋白質。但是一些絲狀菌也具有底物貯存能力,底物貯存能力不能完全用來解釋污泥膨脹機理;
(5)氮氧化氮假說:CASEY提出低負荷生物脫氮除磷工藝的污泥膨脹假說,如果缺氧區的反硝化不充分,導致好氧區存在亞硝酸氮,那中間產物NO、N2O就會抑制菌膠團的好氧細胞色素,進而抑制其好氧情況下的基質利用,相反一些絲狀菌只能將硝酸氮還原為亞硝酸氮,因此不會在反硝化條件下胞內積累NO和N2O,絲狀菌就不會在好氧段被抑制,因而更具競爭優勢。亞硝酸與SVI有一定的正相關性。沉澱性能良好的污泥粒徑分布較廣,且以球菌為主,膨脹污泥的粒徑大都在10μm以內,污泥較為細碎。
影響污泥膨脹的因子:
1、溫度
低溫有利於絲狀菌生長,Daigger等人發現10℃容易導致絲狀菌性污泥膨脹,而污水溫度提高到22℃則不容易產生污泥膨脹現象;
2、pH 值
活性污泥微生物適宜pH范圍為6.5~8.5,pH小於6時,菌膠團活性減弱,生長受到抑制,但絲狀菌能大量繁殖,取代菌膠團成為優勢種群,污泥的沉降性能明顯變差並發生污泥膨脹。pH值低於4.5時,真菌完全占優勢。
3、DO
低DO是引起絲狀菌污泥膨脹的主要原因之一,若DO成為限制因子,菌膠團生長受抑制,而絲狀菌因具有巨大的比表面積,更易獲得溶解氧進行生長繁殖,在競爭中處於優勢地位。具有低Ks的絲狀菌在低基質濃度下,具有比菌膠團高的比生長速率,這可以解釋基質限制、溶解氧限制和營養物質限制引起的污泥膨脹現象。只要溶解氧成為限制,任何負荷下都會發生污泥膨脹。污水處理中DO控制在2左右,太高太低都容易引起污泥膨脹。
4、F/M
低負荷情況下,由於絲狀菌具有巨大的比表面積,低Ks,其對碳源有較強的親和力,優先利用碳源,造成競爭優勢。低F/M經常出現在完全混合式曝氣池、大迴流比的氧化溝(如卡魯薩爾氧化溝)、沿程分散進水曝氣池中;低負荷容易引發絲狀菌污泥膨脹,高負荷容易引發污泥粘性膨脹。負荷分布不均,好氧區一直處於低負荷運行狀態易造成絲狀菌大量增殖。
Li等人對膜生物反應器內污泥負荷參數的影響研究表明,當F/M<0.2kg/kg.d時,容易引發污泥膨脹;Pan和Su等人將污水通過好氧選擇器進入膜生物反應器,將F/M調整到0.4kg/kgd,有效的控制了污泥膨脹;而Laitinen和Luonis等人則是利用缺氧選擇器,加強反硝化除磷作用,有效解決了污泥膨脹。
高有機負荷下,反應器內底物充裕,在這種情況中菌膠團比絲狀菌具有更強的吸附與存貯營養物質的能力,能夠充分利用高濃度的底物迅速增殖,具有較高的比生長速率,抑制了絲狀菌的生長,但是如果DO濃度不夠,在0.5mg/L以下,菌膠團在低溶氧的條件下增殖受到抑制,而絲狀菌由於其具有更大的比表面積,即使在低溶氧的條件下也能獲得氧,其增殖速率明顯高於菌膠團,發生高負荷低DO下的污泥膨脹;低負荷下由於長時間缺少足夠的營養物質,菌膠團生長受到抑制,而絲狀菌具有較大的比表面積,其菌絲會從菌膠團中伸展出來以增加其攝取營養的表面積。
由於研究者的研究背景和研究條件不盡相同,研究結果也很不一致尤其是關於有機負荷與污泥膨脹關系的說法也比較混亂。高低有機負荷都可能引起污泥膨脹,Ford和Eckenfeilder等人發現高低負荷下都可能發生污泥膨脹,Palm等人認為根據負荷不同,在任何DO濃度條件下都可能發生膨脹,Chudoba等人認為即使對於推流式曝氣池,雖然沿吃長方向存在著高的濃度梯度,但在高負荷下也會發生污泥膨脹。
5、N、P營養物質
通常認為污水中BOD5:N:P=100:5:1為微生物的適宜比例。N、P含量不均衡的廢水,會引發絲狀菌與非絲狀菌膨脹,絲狀菌膨脹:有研究發現在缺N的情況下,由於絲狀菌具有巨大的比表面積,低Ks,其對N、P等營養物質有較強的親和力,優先利用營養物質,造成競爭優勢;非絲狀菌污泥膨脹:BOD5/N為100:3時,菌膠團未能有充分的N完成代謝,於是把有機物以高親水性的多糖胞外聚合物(EPS)的形式貯存在胞外。因此要降低進水C/N比。
6、微量元素
完全混合活性污泥法會助長絲狀菌的過量生長,這可用痕量金屬缺乏症理論分析。由於絲狀菌具有比菌膠團更大的比表面積,其在痕量金屬含量不足時比後者具有更大的對痕量金屬的吸附能力,從而抑制了菌膠團的生長。
7、有毒物質
當有毒工業廢水進入污水廠時,活性污泥中的微生物要出現中毒現象,Novak在對非絲狀菌膨脹的研究中發現,菌膠團吸收污水中的有毒物質後,粘性物質分泌減少,生理活動出現異常,可能引起污泥膨脹。
污泥膨脹解決辦法:
1、應急措施:
(1)增加絮凝劑,如投加硅藻土、粘土、厭氧污泥、金屬鹽類、混凝劑,如投加鐵鹽(氯化亞鐵5~50mg/L)、鋁鹽(礬土10~100mg/L)。
(2)採用消毒氧化劑,如採用迴流污泥加氯措施,投加量一般為2~10kgCl2/1000kg干污泥,既可控制曝氣池污泥膨脹也可對二級處理出水消毒,同時使控制污泥膨脹所需要的加氯量最少。銅離子濃度在0.75mg/L時或食鹽濃度為4g/L時對抑制絲狀菌污泥膨脹效果良好。但是此法治標不治本。
2、改變工藝
(1)設置選擇器,選擇器是曝氣池之前或前段設定的高有機負荷區(接觸區),為菌膠團細菌提供高濃度的可吸收的溶解底物,以提高其攝取和貯存能力,使其在與絲狀菌的競爭中處於優勢。
(2)此外改變反應器形式,如將完全混合曝氣池改為推流式曝氣池,連續進水改為間歇進水。絲狀菌幾乎都不能在完全無分子氧的環境中吸收底物,這使得通過脫氮和除磷過程而利用底物的功能菌迅速增殖,所以A/O和A/A/O系統能有效控制絲狀菌污泥膨脹。在A2/O工藝中,厭氧、缺氧區不利於絲狀菌增殖,如果在好氧段能旁流一部分進水提供碳源,則絲狀菌在整個系統中都處於不利狀況。
(3)工藝運行調控:由於污水腐化產生的膨脹,可以對消化污水預曝氣,沉澱池中污泥應及時刮除;N、P缺乏的污水,可及時投加尿素、銨鹽、化肥或與生活污水混合,使BOD5:N:P=100:5:1左右;缺氮時可從污泥消化池往曝氣池投加高含氮污泥上清液;低溶解氧可以增加供氧,採用表面轉刷曝氣的氧化溝,欲提高DO,可通過提高出水堰的高度,以提高轉刷的吃水深度的方法,強化轉刷的曝氣能力;低負荷導致的污泥膨脹,可以適當提高F/M;高負荷污泥膨脹,可射流曝氣剪切絲狀菌,射流高的傳質效率提供充足的溶解氧。增加水力剪切力:通過曝氣時產生的強水力剪切作用使蓬鬆污泥自聚、密實,同時使絮團表面不穩定的絲狀菌脫落。
(4)在完全混合曝氣池中負荷0.1~0.5kgBOD5/(kgMLSSd)都發生膨脹,而推流式中污泥負荷大於0.5kgBOD5/(kgMLSSd)才發生膨脹,而間歇式反應器內沒有發現膨脹現象;變化的水力負荷造成SVI上升,具體分析為高負荷、低溶解氧刺激了絲狀菌的生長,且絲狀菌生長的不可逆性,造成污泥膨脹,特別是當有機物濃度劇增時極易引起污泥膨脹;污泥有機負荷為0.5kg/kgd,並且DO在2mg/L時,可以有效的控制絲狀菌的生長。
(5)低負荷引起污泥膨脹的恢復:加大污泥負荷,利用在高底物濃度的環境條件下,菌膠團的貯存能力與最大比生長速率均比絲狀菌的高這一特點,在反應器中創造出有利於菌膠團生長繁殖的生態環境,使其取代絲狀菌逐漸成為污泥中的優勢菌種,從而使發生膨脹的污泥逐漸恢復正常。
(6)增大污泥迴流量有利於提高菌膠團細菌攝取有機物的能力並且增大與絲狀菌的競爭力度,抑制絲狀菌的膨脹。絲狀菌的生長速率小於非絲狀菌,長SRT有利於絲狀菌的生長,因而增加排泥量,可以有效排除池內過多絲狀菌。並且長泥齡情況下,發生污泥老化,老化的污泥活性不夠,競爭不過絲狀菌,會使絲狀菌在競爭中處於優勢地位。
3、污泥膨脹自然消除的原因:污泥膨脹導致污泥的大量流失,使MLSS濃度降低,其結果是在其它條件不變時,有機負荷提高,DO上升,OUR減小,這都有利於抑制絲狀菌的增殖。
其他污泥膨脹原因:
1、一般認為懸浮固體少而溶解性和易降解的有機物較多,特別是含低分子量的烴類、糖類和有機酸等容易發生絲狀菌膨脹,例如啤酒、食品、乳品、造紙廢水;絲狀菌對高分子物質的水解能力弱,較難吸收不溶性物質,對低分子有機物可直接作為能源加以利用,最有代表性的絲狀菌是球衣菌屬,它能將葡萄糖、蔗糖、乳糖等糖類物質直接利用,當廢水中含有可溶性有機物多時,易誘發絲狀菌膨脹,而不溶性有機物作為去除對象的廢水則不易產生污泥膨脹。Van等發現葡萄糖、乙酸鹽這些低分子可溶性有機物容易引起污泥膨脹,而大分子澱粉不易引起污泥膨脹;
2、腐化的污水,還有大量硫化氫的污水,污水在下水管和初沉池等貯存設施中,停留時間過長,發生早起消化,使pH下降,產生利於絲狀菌攝取的低分子溶解性有機物和硫化氫,引起硫代謝絲狀菌。但是硫化氫大部分是厭氧發酵中的副產物,而厭氧發酵會產生大量小分子有機酸,這些是污泥膨脹的主要原因;
3、一些厭氧裝置雖然出水含有大量硫化氫,但是揮發性有機酸濃度很低時也不會發生污泥膨脹,當揮發性有機酸達到一定濃度時,其中主要的低分子有機酸(乙酸、丙酸)易於降解,因此造成耗氧速率的增加,引起DO限制膨脹。
詳情請參考:《污泥膨脹原因和解決辦法》
http://tyh.1.blog.163.com/blog/static/7414591020145173347324/
⑹ AO工藝,氧化溝工藝,SBR工藝的優缺點對比
SBR 工藝和氧化溝工藝都比較適合於中小型污水廠,如果設計管理的好,都可以取得比較好的除磷脫氮效果。但是這兩種工藝又各有優缺點,分別適用於不同的情況,在選定方案時需要仔細分析。
從基建投資看,SBR 工藝是合建式,一般情況下征地費和土建費較氧化溝低,而設備費較氧化溝高,總造價的高低則要視具體情況決定。
1) SBR 工藝由於採用合建式,不需要設置二沉地,同時由於採用微孔曝氣,可以採用的水深一般為4~6m,比一般氧化溝的水深(3 ~4m) 要深,因此在同樣的負荷條件下,SBR 工藝的佔地面積小,如果污水處理廠所在地的征地費用比較高,對SBR 工藝有利。
2) 進水BOD濃度高,反應容積與沉澱容積的比值高,對氧化溝有利;BOD濃度低,反應容積與沉澱容積的比值低,對SBR 有利。
3) SBR 工藝中一個周期的沉澱時間是由活性污泥界面的沉速、MLSS濃度、水溫等因素確定的,渾水時間是由潷水器的長度、上清液的潷除速率等因素決定的,對於一個固定的反應系統,沉澱時間和潷水時間的和基本上是固定的,一般都不應小於2 小時,因此每個周期的時間短,反應時間所佔的比例就低,反應池的容積利用系數降低。對於污泥穩定要求不高的污水廠,選擇 SBR 工藝不利。( 合建式氧化溝工藝也有這個缺點) 。
4) SBR 工藝是靜態沉澱,氧化溝工藝是動態沉澱,因而SBR 的沉澱效率更高,出水水質更好。
5) SBR 工藝和交替式氧化溝需要頻繁地開停進水閥門,曝氣設備,潷水器等,因此對自控設備的要求比較高,目前某些國產設備的質量尚不過關,如果考慮進口,自控系統所佔的投資比例將增加而且將增大維修費用。
6) 在一些水量非常小的小城鎮,夜間幾乎沒有污水產生,這時候SBR 工藝和交替式氧化溝工藝有優越性,曝氣設備可以白天運轉,夜間停止運行。
7) 從運營費用看,SBR 工藝通常用鼓風曝氣,氧化溝工藝通常用機械曝氣。一般說來,在供氧量相同的情況下,鼓風曝氣比機械曝氣省電;第二方面,SBR 工藝是合建式,不用污泥迴流( 有的少量迴流) ,氧化溝工藝是分建式要大量迴流,電耗較大;第三方面,SBR 工藝是變水位運行,增大了進水提升泵站的揚程。綜合考慮,通常氧化溝工藝的電耗要比 SBR工藝大些,運營費要高些。
8) 在寒冷的氣候條件下,因為表面曝氣器會造成表面冷卻或者結冰,降低污水的溫度,而污水的溫度降低對生化反應尤其是硝化反應的影響較大,所以在寒冷地區採用氧化溝工藝需要採取一些特殊措施,如將氧化溝加蓋,而這些措施都使氧化溝工藝在和其它工藝競爭中處於不利的地位。
9)AO工藝法也叫厭氧好氧工藝法,A(Anacrobic)是厭氧段,用與脫氮除磷;O(Oxic)是好氧段,用於除水中的有機物。
A/O法脫氮工藝的特點:
(a) 流程簡單,勿需外加碳源與後曝氣池,以原污水為碳源,建設和運行費用較低;
(b) 反硝化在前,硝化在後,設內循環,以原污水中的有機底物作為碳源,效果好,反硝化反應充分;
(c) 曝氣池在後,使反硝化殘留物得以進一步去除,提高了處理水水質;
(d) A段攪拌,只起使污泥懸浮,而避免DO的增加。O段的前段採用強曝氣,後段減少氣量,使內循環液的DO含量降低,以保證A段的缺氧狀態。
A/O法存在的問題:
1.由於沒有獨立的污泥迴流系統,從而不能培養出具有獨特功能的污泥,難降解物質的降解率較低;
2、若要提高脫氮效率,必須加大內循環比,因而加大運行費用。從外,內循環液來自曝氣池,含有一定的DO,使A段難以保持理想的缺氧狀態,影響反硝化效果,脫氮率很難達到90%
⑺ 去關於污水處理廠處理的實踐報告3000個字
環境保護是我國的基本國策。世界經濟發展的實踐證明,為實現經濟的持續穩定的發展,必須解決好發展與環境保護的矛盾。隨著我國社會和經濟的高速發展,城市環境污染特別是水污染的問題日趨嚴重。城鎮生活污水的排放量逐年增加,2002年全國工業和城鎮生活廢水排放總量為439.5億噸,比上年增加1.5%。其中工業廢水排放量207.2億噸,比上年增加2.3%;城鎮生活污水排放量232.3億噸,比上年增加0.9%,其中僅有10%得到處理。[1]生活污水中含有較高的氮、磷等營養物質,未經處理直接排入江河湖海,是導致水域富營養化污染的主要原因。2002年監測數據顯示,遼河、海河水系污染嚴重,劣V類水體佔60%以上;淮河幹流水質以III-V類水體為主,支流及省界河段水質仍然較差;黃河水系總體水質較差,幹流水質以III-IV類水體為主,支流污染普通嚴重;松花江水系以III-IV類水體為主;珠江水系水質總體良好,以II類水體為主;長江幹流及主要一級支流水質良好,以II類水體為主。由於「污染性」造成的水資源短缺,已成為嚴重製約我國社會經濟持續發展的突出問題,丞待解決。目前我國水污染控制的重點已從以工業點源為主,逐步轉變為以城市污水污染為主的控制。根據預測 [2],到2010年我國城市污水排放總量為1050億m3,城市污水處理率要達到50%,預計需新建污水處理廠1000餘座,而決定城市污水處理廠投資和運行成本的主要因素是污水處理工藝和技術的選擇,因此開發適合我國國情的、高效、低耗、能滿足排放要求、基建和運行費用低的污水處理新技術和新工藝,具有十分重要的現實意義。
二、生活污水處理工藝研究和應用領域共同關注的問題
長期以來,城市生活污水的二級生物處理多採用活性污泥法,它是當前世界各國應用最廣的一種二級生物處理流程,具有處理能力高,出水水質好等優點。但卻普遍存在著基建費、運行費高,能耗大,管理較復雜,易出現污泥膨脹、污泥上浮等問題,且不能去除氮、磷等無機營養物質。對於我國這樣一個資源不足、人口眾多的發展中國家,從可持續發展的角度來看,並不適合中國國情。由於污水處理是一項側重於環境效益和社會效益的工程,因此在建設和實際運行過程中常受到資金的限制,使得治理技術與資金問題成為我國水污染治理的「瓶頸」。歸納起來,目前在城市生活污水處理研究和應用領域,普遍存在的問題有:
(1)採用傳統的活性污泥法,往往基建費、運行費高,能耗大,管理較復雜,易出現污泥膨脹現象;工藝設備不能滿足高效低耗的要求。
(2)隨著污水排放標準的不斷嚴格,對污水中氮、磷等營養物質的排放要求較高,傳統的具有脫氮除磷功能的污水處理工藝多以活性污泥法為主,往往需要將多個厭氧和好氧反應池串聯,形成多級反應池,通過增加內循環來達到脫氮除磷的目的,這勢必要增加基建投資的費用及能耗,並且使運行管理較為復雜。
(3)目前城市污水的處理多以集中處理為主,龐大的污水收集系統的投資遠遠超過污水處理廠本身的投資,因此建設大型的污水處理廠,集中處理生活污水,從污水再生回用的角度來說不一定是唯一可取的方案。
因此,如何使城市污水處理工藝朝著低能耗、高效率、少剩餘污泥量、最方便的操作管理,以及實現磷回收和處理水回用等可持續的方向發展。已成為目前水處理技術研究和應用領域共同關注的問題,就要求污水處理不應僅僅滿足單一的水質改善,同時也需要一並考慮污水及所含污染物的資源化和能源化問題,且所採用的技術必須以低能耗和少資源損耗為前提。
三、生物膜法處理工藝在生活污水處理中的應用研究發展
在污水生物處理的發展和應用中,活性污泥和生物膜法一直占據主導地位。隨著新型填料的開發和配套技術的不斷完善,與活性污泥法平行發展起來的生物膜法處理工藝在近年來得以快速發展。由於生物膜法具有處理效率高,耐沖擊負荷性能好,產泥量低,佔地面積少,便於運行管理等優點,在處理中極具競爭力。
1.生物膜法凈化污水機理
污水中有機污染物質種類繁多,成分復雜。但對於生活污水來說,其有機成分歸納起來主要包括:蛋白質(40%-60%),碳水化合物(25%-50%)和油脂(10%),此外還含有一定量的尿素[3]。生物膜法依靠固定於載體表面上的微生物膜來降解有機物,由於微生物細胞幾乎能在水環境中的任何適宜的載體表面牢固地附著、生長和繁殖,由細胞內向外伸展的胞外多聚物使微生物細胞形成纖維狀的纏結結構,因此生物膜通常具有孔狀結構,並具有很強的吸附性能。
生物膜附著在載體的表面,是高度親水的物質,在污水不斷流動的條件下,其外側總是存在著一層附著水層。生物膜又是微生物高度密集的物質,在膜的表面上和一這深度的內部生長繁殖著大量的微生物及微型動物,形成由有機污染物 →細菌→原生動物(後生動物)組成的食物鏈。生物膜是由細菌、真菌、藻類、原生動物、後生動物和其他一些肉眼可見的生物群落組成。其中細菌一般有:假單苞菌屬、芽苞菌屬、產鹼桿菌屬和動膠菌屬以及球衣菌屬,原生動物多為鍾蟲、獨縮蟲、等枝蟲、蓋纖蟲等。後生動物只有在溶解氧非常充足的條件下才出現,且主要為線蟲。污水在流過載體表面時,污水中的有機污染物被生物膜中的微生物吸附,並通過氧向生物膜內部擴散,在膜中發生生物氧化等作用,從而完成對有機物的降解。生物膜表層生長的是好氧和兼氧微生物,而在生物膜的內層微生物則往往處於厭氧狀態,當生物膜逐漸增厚,厭氧層的厚度超過好氧層時,會導致生物膜的脫落,而新的生物膜又會在載體表面重新生成,通過生物膜的周期更新,以維持生物膜反應器的正常運行。
生物膜法通過將微生物細胞固定於反應器內的載體上,實現了微生物停留時間和水力停留時間的分離,載體填料的存在,對水流起到強制紊動的作用,同時可促進水中污染物質與微生物細胞的充分接觸,從實質上強化了傳質過程。生物膜法克服了活性污泥法中易出現的污泥膨脹和污泥上浮等問題,在許多情況下不僅能代替活性污泥法用於城市污水的二級生物處理,而且還具有運行穩定、抗沖擊負荷強、更為經濟節能、具有一定的硝化反硝化功能、可實現封閉運轉防止臭味等優點。
通過人工強化作用將生物膜引入到污水處理反應器中,便形成了生物膜反應器。近年來,物物膜反應器發展迅速,由單一到復合,有好氧也有厭氧,逐步形成了一套較完整的生物處理系統。
填料是生物膜技術的核心之一,它的性能對廢水處理工藝過程的效率、能耗、穩定性以及可靠性均有直接關系。
2、厭氧生物膜法處理工藝在生活污水處理中的應用研究進展
(1)、復雜物料的厭氧降解階段
在廢水的厭氧處理過程中,廢水中的有機物經大量微生物的共同作用,被最終轉化為甲烷、二氧化碳、水、硫化氫和氨。在此過程中,不同的微生物的代謝過程相互影響,相互制約,形成復雜的生態系統。對復雜物料的厭氧過程的敘述,有助於我們了解這一過程的基本內容。所謂復雜物料,即指那些高分子的有機物,這些有機物在廢水中以懸浮物或膠體形式存在。
復雜物料的厭氧降解過程可以被分為四個階段。
水解階段:高分子有機物因相對分子質量巨大,不能透過細胞膜,因此不可能為細菌直接利用。因此它們在第一階段被細菌胞外酶分解為小分子。例如纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶分解為麥芽糖和葡萄糖,蛋白質被蛋白酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。
發酵(或酸化)階段:在這一階段,上述小分子的化合物在發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。這一階段的主要產物有揮發性脂肪酸(簡寫作VFA)、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此未酸化廢水厭氧處理時產生更多的剩餘污泥。
產乙酸階段:在此階段,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。
產甲烷階段:這一階段里,乙酸、氫氣、碳酸、甲酸和甲醇等被轉化為甲烷、二氧化碳和新的細胞物質。
在以上階段里,還包含著以下這些過程:a、水解階段里有蛋白質水解、碳水化合物的水解和脂類水解;b、發酵酸化階段包含氨基酸和糖類的厭氧氧化與較高級的脂肪酸與醇類的厭氧氧化;c、產乙酸階段里有從中間產物中形成乙酸和氫氣和由氫氣和 氧化碳形成乙酸;d、甲烷化階段包括由乙酸形成甲烷和從氫氣和二氧化碳形成甲烷。除以上這些過程之外,當廢水含有硫酸鹽時還會有硫酸鹽還原過程。復雜化合物的厭氧降解可以利用圖來表述(見圖1)
(2)厭氧生物膜法處理工藝的應用研究進展
a、厭氧濾器(AF)
厭氧濾器是60年代末由美國McCarty 等在Coulter等研究基礎上發展並確立的第一個高速厭氧反應器。傳統的好氧生物系統一般容積負荷在2KgCOD/(m3?d)以下。而在AF發明之前的厭氧反應器一般容積負荷也在4-5kgCOD/(m3?d)以下。但AF在處理溶解性廢水時負荷可高達10-15 kgCOD/(m3?d)。[4]因此AF的發展大大提高了厭氧反應器的處理速率,使反應器容積大大減少。
AF作為高速厭氧反應器地位的確立,還在於它採用了生物固定化的技術,使污泥在反應器內的停留時間(SRT)極大地延長。McCarty發現在保持同樣處理效果時,SRT的提高可以大大縮短廢水的水力停留時間(HRT),從而減少反應器容積,或在相同反應器容積時增加處理的水量。這種採用生物固定化延長SRT,並把SRT和HRT分別對待的思想推動了新一代高速厭氧反應器的發展。
SRT的延長實質是維持了反應器內污泥的高濃度,在AF內,厭氧污泥的濃度可以達到10-20gVSS/L。AF內厭氧污泥的保留由兩種方式完成:其一是細菌在AF內固定的填料表面(也包括反應器內壁)形成生物膜;其二是在填料之間細菌形成聚集體。高濃度厭氧污泥在反應器內的積累是AF具有高速反應性能的生物學基礎,在一定的污泥比產甲烷活性下,厭氧反應器的負荷與污泥濃度成正比。同時,AF內形成的厭氧污泥較之厭氧接觸工藝的污泥密度大、沉澱性能好,因而其出水中的剩餘污泥不存在分離困難的問題。由於AF內可自行保留高濃度的污泥,也不需要污泥的迴流。
在AF內,由於填料是固定的,廢水進入反應器內,逐漸被細菌水解酸化、轉化為乙酸和甲烷,廢水組成在不同反應器高度逐漸變化。因此微生物種群的分布也呈現規律性。在底部(進水處),發酵菌和產酸菌佔有最大的比重,隨反應器高度上升,產乙酸菌和產甲烷菌逐漸增多並佔主導地位。細菌的種類與廢水的成分有關,在已酸化的廢水中,發酵與產酸菌不會有太大的濃度。
細菌在反應器內分布的另一特徵是反應器進水處(例如上流式AF的內部)細菌由於得到營養最多因而污泥濃度最高,污泥的濃度隨高度迅速減少。
污泥的這種分布特徵賦予AF一些工藝上的特點。首先,AF內廢水中有機物的去除主要在AF底部進行(指上流式AF),據Young和Dahab報道[4], AF反應器在1m以上COD的去除率幾乎不再增加,而大部分COD是在0.3m以內去除的。因此研究者認為在一定的容積負荷下,淺的AF反應器比深的反應器能有更好的處理效率。其次,由於反應器底部污泥濃度特別大,因此容易引起反應器的堵塞。堵塞問題是影響AF應用的最主要問題之一。據報道,上流式AF底部污泥濃度可高達60g/L。厭氧污泥在AF內的有規律分布還使得反應器對有毒物質的適應能力較強,可以生物降解的毒性物質在反應器內的濃度也呈現出規律性的變化,加之厭氧生物膜形成各種菌群的良好共生體系,因此在AF內易於培養出適應有毒物質的厭氧污泥。例如在處理三氯甲烷和甲醛廢水中,發現AF反應器內的污泥產生了良好的適應性,這些有毒物質的去除效果和允許的進液濃度逐漸上升。AF同時也具有較大的抗沖擊負荷能力。一般認為在相同的溫度條件下,AF的負荷可高出厭氧接觸工藝2~3倍,同時會有較高的COD去除率。
AF在應用上的問題除了堵塞和由局部堵塞引起的溝流以外,另一個問題是它需要大量的填料,填料的使用使其成本上升。由於以上問題,國外生產規模的AF系統應用也不是很多。據Le-ttinga在1993年估計,國外生產規模的AF系統大約僅有30~40個。[4]
作為升流式厭氧濾池的革新技術——厭氧膜床(S?pecial Anaerobic Film Bed, SAFB),採用較大顆粒及孔隙率的填料代替傳統的小粒徑填料,有效地解決了反應器的堵塞問題。厭氧膜床具有如下特點:
有效克服了厭氧濾池易堵塞和出水水質差的缺點;
生物固體濃度高,因此可獲得較高的有機負荷;
在厭氧膜床內微生物通過附著在填料表面形成生物膜,以及懸浮於填料孔隙間形成細菌聚集體,因此在厭氧膜床內可以保持較高的生物量。因此可縮短水力停留時間,耐沖擊負荷能力較強;
啟動時間短,停止運行後再啟動也較容易;
不需要迴流污泥,運行管理方便;
在水量和負荷有較大變化的情況下,耐沖擊性較好。
b、厭氧流化床反應器(AFBR)
在流化床系統中依靠在惰性的填料微粒表面形成的生物膜來保留厭氧污泥,液體與污泥的混合、物質的傳遞依靠使這些帶有生物膜的微粒形成流態化來實現。
流化床反應器的主要特點可歸納如下:
流態化能最大程度使厭氧污泥與被處理的廢水接觸;
由於顆粒與流體相對運動速度高,液膜擴散阻力小,且由於形成的生物膜較薄,傳質作用強,因此生物化學過程進行較快,允許廢水在反應器內有較短的水力停留時間;
克服了厭氧濾器堵塞和溝流問題;
高的反應器容積負荷可減少反應器體積,同時由於其高度與直徑的比例大於其它厭氧反應器,因此可以減少佔地面積。
但是,厭氧流化床反應器存在著幾個尚未解決的問題。其一,為了實現良好的流態化並使污泥和填料不致從反應器流失,必須使生物膜顆粒保持均勻的形狀、大小和密度,但這幾乎是難以做到的,因此穩定的流態化也難以保證。[5]其次,一些較新的研究認為流化床反應器需要有單獨的預酸化反應器。同時,為取得高的上流速度以保證流態化,流化床反應器需要大量的迴流水,這樣導致能耗加大,成本上升。由於以上原因,流化床反應器至今沒有生產規模的設施運行。有人認為它在今後應用的前景也不大。[5]
c、厭氧附著膜膨脹床反應器(AAFEB)
厭氧附著膜膨脹床(Anaerobic Attached Film Expanded Bed)是Jewell等人在1974年研究和開發出來的一種污水處理工藝。與生物流化床相比,區別在於載體的膨脹程度。以填料層高度計,膨脹床的膨脹率約為10%~20%,此時顆粒間仍保持互相接觸,而流化床則為20%~70%。Bruce J.Alderman等[6]通過對比厭氧膨脹床、滴濾池和活性污泥法等工藝的經濟性,發現對於小型污水處理廠而言,厭氧膨脹床後續滴濾池的設計是最為經濟的選擇,能耗量少,污泥產率量低。但目前此工藝仍主要停留在小試和中試研究階段。
綜上所述,採用厭氧生物膜反應器為主體的厭氧處理技術,作為生活污水處理的核心方法,在技術上已經成熟,並且較之其它方法有獨到的一些優勢。但是,厭氧方法在濃縮營養物(氮和磷)方面效果不大,同時它僅能除去部分病源微生物。此外,殘存的BOD、懸浮物或還原性物質可能影響到出水的質量。所以厭氧生物膜反應器要成為完整的環境治理技術,合適的後處理手段必不可少。
3、好氧生物膜法處理技術——生物接觸氧化
生物接觸氧化法是由生物濾池和接觸曝氣氧化池演變而來的。早在20世紀30年代,已在美國出現生產型裝置。當時的生物接觸氧化池,填料的材質是砂石、竹木製品和金屬製品,主要用於處理低濃度、低有機負荷的污水,它克服了活性污泥法在處理此類污水時,因污泥流失而不能維持正常運行的缺點,並取得了較好的效果。進入70年代,隨著大孔徑、高比表面積的蜂窩直管填料和立體波紋塑料填料的出現,使生物接觸氧化法的應用范圍得到拓寬,它不僅可用於處理生活污水,而且可用於處理高濃度有機廢水和有毒有害工業廢水,與其他生物處理方法相比,展現出了優越性,我國在70年代開始對生物接觸氧化法進行了研究,第一座生產性試驗裝置用於處理城市污水,在處理效果、動力消耗、經濟效益和管理維護等方面都明顯優於活性污泥法。與活性污泥法比較,生物接觸氧化具有以下主要優點:①生物接觸化法以填料作為載體,供生物群棲息生長,形成穩定的生態體系,有較高的微生物濃度,一般可達10~20g/l;氧的利用率高,可達10%。具有較高的耐沖擊負荷能力和對環境變化的適應能力,剩餘污泥量少。②生物接觸氧化法可以充分利用絲狀菌的強氧化能力且不產生污泥膨脹。並且不需要象活性污泥法那樣採用污泥迴流以調整污泥量和溶解氧濃度,易於管理和操作。隨著十餘年的大量實踐,對氧化池結構形式、填料的品種和安裝方式、供氣裝置的種類和布置形式等方面進行了不斷創新、不斷優化。目前,生物接觸氧化技術已經廣泛應用處理生活污水、生活雜用水和不同有機物濃度的工業廢水。
填料是微生物棲息的場所、生物膜的載體。填料的表面生長生物膜,生物膜的新陳代謝過程使污水得利凈化。填料的性能直接影響著生物接觸氧化技術的效果和經濟上的合理性,因而填料的選擇是生物接觸氧化技術的關鍵。
填料的特性取決於填料的材質和結構形式。填料的材質應具有分子結構穩定、抗老化、耐腐蝕和生物穩定性好等特性。填料的結構形式應具有比表面積大、空隙率高、硬度高、有布水布氣和切割氣泡的功能。填料之間的空隙在外力作用下可發生變化,有利於剝落的生物膜及時排出填料區,以及填料的體積應具有可壓縮性,並在復原後不發生變形,便於運輸和安裝。
固定化載體的發展
(1)固定式填料
固定式填料以蜂窩狀及波紋狀填料為代表,多用玻璃鋼、各種薄形塑料片構成。新近有陶土直接燒結生產的陶瓷蜂窩填料,孔形為六角形,孔徑在20~100mm之間。由於比表面積小,生物膜量小,表面光滑,生物膜易脫落,填料橫向不流通,造成布氣不均勻,易堵塞以至無法正常運轉,且造價較高,近年來,此類填料已逐漸淘汰。
(2)懸掛式填料
懸掛式填料包括軟性、半軟性及組合填料、軟性填料,理論比表面積大,空隙率>90%,掛膜快,空隙的可變性使之不易堵塞,而且造價低,組裝方便,出水穩定,處理效果較好,COD和BOD5去除率達80%以上。但廢水濃度高或水中懸浮物較大時,填料絲會結團,大大減少了實際利用的比表面積,且易發生斷絲、中心繩斷裂等情況,影響使用壽命,其壽命一般為1~2年。半軟性填料,具有較強的氣泡切割性能和再行布水布氣的能力、掛膜脫膜效果較好、不堵塞;COD和BOD去除率在70-80%。使用壽命較軟性填料長。但其理論比表面積較小(87-93m2/m3)生物膜總量不足影響污水處理效果,且造價偏高。
組合式填料,是鑒於軟性、半軟性存在的上述缺點並吸取軟性填料比表面積大、易掛膜和半軟性填料不結團,氣泡切割性能好而設計的新型填料,在填料中央設計半軟性部件支撐著外圍的軟性纖維束,其平面有如盾形,故又稱盾式填料。其比表面積1000~2500 m2/m3,空隙率98%-99%,具有掛膜快,生物總量大,不結團等優點。污水處理能力優於軟性、半軟性填料,在正常水力負荷條件下COD去除率70%-85%,BOD5去除率達80%~90%,與之類似的還有燈籠式(或龍式)和YDT彈性立體填料。
(3)分散式填料
分散式填料包括堆積式、懸浮式填料,種類繁多。特點是無需固定和懸掛,只需將之放置於處理裝置之中,使用方便,更換簡單。北京曉清環保公司的多孔球形懸浮填料和北京桑德公司的SNP無剩餘污泥懸浮填料等,具有充氧性能好,掛膜快,使用壽命長等優點。江西萍鄉佳能環保工程公司新近開發的堆積式填料—球形輕質陶料,填料粒徑2~4 mm,有巨大的比表面積,使反應器中單位體積內可保持較高的生物量,而且填料上的生物膜較薄,其活性相對較高,具有完全符合曝氣生物濾池填料的國際性能標准,在法國承建的我國大連馬欄河污水處理廠使用,這是我國新型填料開發的一項重大突破。
四、水解酸化—好氧活性污泥工藝在生活污水處理中的應用
城市污水經厭氧處理後,在現有的技術條件下,要達到二級出水標准,需要相當長的停留時間,結果使厭氧處理雖然在運行管理費用上佔有優勢,但在基建投資上卻失去了競爭力。因此從微生物和化學角度講,厭氧處理僅僅提供了一種預處理,它一般需要後處理方能滿足新的污水排放標准。印度和南美國家在積極推廣應用厭氧生活污水處理技術的同時,普遍意識到由於厭氧處理後氮和磷基本上沒有去除,因此對厭氧出水進一步處理很有必要。缺乏合適的後處理技術,是導致厭氧生物處理技術在生活污水處理領域應用緩慢的主要原因之一。雖然已有的小試實驗結果表明,兩級厭氧系統組合可以獲得良好的處理效果。但目前,在實際生產中,應用最為廣泛的仍然是厭氧與好氧組合系統。在印度,氧化塘是最常用的後處理方法。經厭氧、氧化塘兩級處理後的出水BOD5、CODcr和TSS去除率分別為87%、81%和90%。在巴西NovaVista市的7000人生活污水處理工程中,以及哥倫比亞Bucarmanga鎮的160000人生活污水處理工程中,後處理均採用的是兼性氧化塘。在墨西哥的厭氧生活污水處理工程中,後處理方法比較多樣化,二沉池+氯消毒、淹沒濾池+二沉池+氯消毒、氧化溝等,最後直接排入城市污水管網或用於農灌。在日本,城鎮生活污水一般採用厭氧消化+好氧活性污泥法聯合處理、厭氧濾池+好氧濾池以及厭氧濾池+接觸氧化法組合處理。並且最新研製的具有脫氮除磷功能的高級型JOHKASO小型家用生活污水凈化器系統,廣泛應用於分散處理生活污水方面。[7]厭氧和好氧生物處理技術的組合能夠有效的去除大部分有機和無機污染物。厭氧生物專家G·Lettinga教授斷言厭氧處理生物技術如果有合適的後處理方法相配合,可以成為分散型生活污水處理模式的核心手段,這一模式較之於傳統的集中處理方法更具有可持續性和生命力,尤其適合發展中國家的情況。[8]
厭氧-好氧組合處理工藝,充分發揮了厭氧技術節能、好氧技術高效的優勢,成為目前污水處理工藝發展的主要趨勢。在國外,由上流式厭氧污泥床反應器(UASB)和好氧生物膜反應器組成的厭氧—好氧組合處理工藝一直是研究的重點,[9,10,11]並針對組合工藝的硝化/反硝化性能和動力學機理展開了較為深入的研究。[12,13]近年來,Ricardo Franci Goncalves等[14,15]進行的小試和中試的研究結果表明,採用UASB和淹沒式曝氣生物濾池(BF)組合工藝處理生活污水,兩段HRT分別為6h和0.17h時系統對CODcr 、BOD5 和SS去除率均在90%以上,並且該組合系統相對單一的UASB污水處理系統而言,有更好的穩定出水水質的作用。當BF段的污泥迴流至UASB段時,厭氧反應器內有機物甲烷化的能力提高,使產氣量增加、剩餘污泥量減少,可以減少甚至省去污泥濃縮池和消化池。
由於以UASB為主體的厭氧-好氧組合處理工藝,受溫度的影響較大,特別是在低溫條件下,系統的性能不能得到充分的發揮。Igor Bodik等[16]通過中試試驗研究了厭氧折流板生物濾池反應器和淹沒式曝氣生物濾池組合工藝低溫下處理生活污水時的脫氮性能。系統經過一年的運行,在厭氧段和好氧段的水力停留時間分別為15 h和4h的條件下,即使環境溫度低於10℃(平均氣溫5.9℃),對CODcr、BOD5和SS的去除率仍達80%左右。低溫使硝化的活性受到一定的影響,溫度在4.5-23℃范圍內,TKN的去除率在46.4-87.3%間變化,並且該系統也具有一定的反硝化功能,為低溫環境下生活污水的脫氮處理提供了參考。
⑻ 環保專業一講義:活性污泥法的動力學基礎
2.1.5活性污泥法的動力學基礎
活性污泥法動力學研究的目的是:定量地研究微生物在一定條件下對有機污染物的降解速率,使污水處理在比較理想的條件下,達到處理效率,並且使得工藝設計和運行管理更加合理。此外,通過動力學研究,明確有機物代謝和降解的內在規律,以便人們能夠主動地對污水生物處理的生化反應速度進行控制,以達到處理的要求。
本書主要介紹了莫諾德方程和以此為基礎建立的勞倫斯-麥卡蒂方程。
1、莫諾德方程
該方程是莫諾德在1942年用純種微生物在單
一無毒性的有機底物的培養基上進行的微生物增殖速率和底物濃度之間的關系研究試驗中得到的,並提出了與描述酶促反應速度與有機底物關系式類似的微生物增殖速率和底物濃度關系式,此後,他人進行的混合微生物群體組成的活性污泥對多種有機底物的微生物增殖試驗,也取得了與莫諾德提出關系相似的結果,這說明莫諾德方程是適合活性污泥過程的。
要熟悉莫諾德方程的推導及推論,熟悉莫諾德方程中各常數的求解。
2、勞倫斯-麥卡蒂方程
勞倫斯-麥卡蒂基本方程是根據莫諾德方程建立的動力學關系式,仍是基於微生物的增殖和有機物的降解過程。該方程強調污泥齡(即細胞停留時間)的重要性,由於污泥齡可以通過控制污泥的排放量進行調節,因此,勞倫斯-麥卡蒂基本方程在實際應用中的可操作性強。另外,由勞倫斯-麥卡蒂基本方程衍生的其他關系式可以確定曝氣池出水有機物濃度、曝氣池微生物與污泥齡的關系濃度,確定污泥齡與污泥迴流比的關系,確定有機物在高濃度與低濃度時的降解關系,確定活性污泥表觀產率與污泥產率的關系等等。
2.1.6活性污泥法的凈化機理、過程及影響因素
1、凈化機理及過程
⑴活性污泥中的微生物在酶的催化作用下,利用污水中的有機物和氧,將有機物氧化為水和二氧化碳,達到去除水中有機污染物的目的。
⑵凈化過程
活性污泥去除污水中有機物的過程一般分為三個階段:
①初期的吸附去除階段
在該階段,污水和污泥在剛開始接觸的5~10min內就出現了很高的BOD去除率,通常30min內完成污水中的有機物被大量去除,這主要是由於活性污泥的物理吸附和生物吸附作用共同作用的結果。
活性污泥法初期的吸附去除的主要特點包括以下幾點:
a.初期的吸附去除完成時間短,去除量大;b.去除的有機物對象主要是膠體和懸浮性有機物;c.活性污泥的性質與初期的吸附去除關系密切,一般處於內源呼吸期的活性污泥微生物吸附能力強,而氧化過度的活性污泥微生物初期吸附的效果不好;d.初期吸附有機物的效果與生物反應池的混合及傳質效果密切相關;e.被吸附的有機物沒有從根本上被礦化,通過數小時的曝氣後,在胞外酶的作用下,被分解為小分子有機物後才可能被微生物酶轉化。
②代謝階段
活性污泥吸附了污水中呈非溶解狀態的大分子有機物後,被微生物的胞外酶分解成小分子的溶解性有機物,與污水中溶解性的有機物一起進入微生物細胞內被降解和轉化,一部分有機物質進行分解代謝,氧化為二氧化碳和水,並獲得合成新細胞所需的能量,另一部分物質進行合成代謝,形成新的細胞物質。
③活性污泥絮體的分離沉澱
無論分解還是代謝,都能去除有機污染物,但是產物卻不同,分解代謝的產物是二氧化碳和水,而合成代謝的產物則是新的細胞,並以剩餘污泥的方式排出活性污泥系統。
沉澱是混合液中固相活性污泥顆粒同廢水分離的過程。固液分離的好壞,直接影響出水水質。如果處理水挾帶生物體,出水BOD和SS將增大。所以,活性污泥法的處理效率,同其他生物處理方法一樣,應包括二次沉澱池的效率,即用曝氣池及二沉池的總效率表示,除了重力沉澱外,也可用氣浮法進行固液分離。
2、二次沉澱池及工藝參數
污泥的分離沉澱是在二次沉澱池中進行的,二沉池可以與曝氣池分建或合建。分建式二沉池的類型有豎流式、平流式和輻流式,大中型城市污水處理廠中二沉池一般採用圓形輻流式沉澱池。
二沉池是生物處理工藝中最後一個工藝單元,沉澱效果對出水水質的影響非常大,主要有兩個作用:從曝氣池混合液中分離出符合設計要求的澄清水,濃縮迴流污泥;其關鍵的兩個工藝參數是表面水力負荷和固體負荷。表面水力負荷是流過每平方米沉澱池表面積的污水量,是直接與污泥沉降性能相關的參數;固體負荷是指單位時間內單位二沉池面積所能濃縮的混合液懸浮固體量,是二沉池污泥濃縮能力的指標,對於一定的活性污泥而言,二沉池固體負荷越小污泥濃縮效果越好。應該掌握各負荷的設計參數,對於分建式沉澱池,表面水力負荷為0.6~1.5 m3/m2h,而合建式二沉池的表面水力負荷宜為0.5~1.0 m3/m2h,對於固體負荷來說,傳統活性污泥法二沉池的固體負荷應≤150 kg/m2d。
3、活性污泥凈化污水的影響因素
活性污泥法中的微生物的生長受周圍環境條件影響非常大,營養物質、pH值、溫度、溶解氧的含量以及某些有毒物質等極大地影響著好氧生物處理系統的運行及凈化功能。
⑴營養物質
污水中各種營養物質的量及比例影響著微生物的生長、繁殖,從而影響好氧生物處理系統的處理效果。細菌所需的營養元素分為兩種:主要生物元素和次要生物元素。主要生物元素主要有C、O、H、S、N、P、K、Mg、Ca、Fe等,大多數生物元素都佔0.5%以上;次要元素主要有Zn、Mn、Na、Cl、Cu、B、Ni、Mo和Co等。
在污水的生物處理中,營養物質的平衡是非常重要的,上述主要元素和次要元素都必須滿足要求,而且比例必須適當,任何一種缺乏或比例失調都會影響微生物的代謝作用,影響活性污泥的正常功能發揮,從而影響污水的生物處理效果。由於生活污水的營養源充足,因此對工業廢水進行處理時,可以考慮將生活污水和工業廢水合並處理,可以提高處理效率,並且能降低處理費用。
⑵溶解氧的含量
溶解氧(即DO)是影響好氧生物處理系統運行的主要因素之一。在污水好氧生物處理過程中,為了維持好氧微生物的代謝需求,需要向曝氣池補充氧氣,保證曝氣池混合液中溶解氧濃度不小於2mg/L。
當溶解氧的濃度不足時,輕則使好氧微生物的活性受到影響,新陳代謝能力減弱,出水中有機物濃度升高,反應器處理效率下降,若溶解氧嚴重不足時,厭氧微生物將會大量繁殖,反應器處理效率明顯下降,影響出水的水質。因此,為使反應器內有足夠的溶解氧,從外部供給,一般應該以2~4 mg/L為宜此時其沉降、絮凝效果好。
⑶pH值
由於pH值的改變可能會引起細胞膜電荷的變化,從而影響微生物對營養物質的吸收和微生物代謝過程中酶的活性,會改變營養物質的供給性和有害物質的毒性,而且不利的pH值條件不僅影響微生物的生長,還會影響微生物的形態,所以,在生物處理系統中,pH值的大幅度改變會影響反應器的處理效率。
通常生活污水中含有一些緩沖物質,能夠對pH值的變化起到一定的緩沖作用,但這一緩沖作用是有限的,尤其是工業廢水,緩沖物質含量較少,而且pH值變化幅度較大,當超過微生物生長的pH值范圍時,必須通過調節裝置對pH值進行調整,所以,在反應器的設計與運行時應重點考慮這個問題。
⑷污水的溫度
溫度對好氧生物處理系統的影響是多方面的,水溫的改變,會影響在生物體內所進行的許多生化反應,因而影響生物的代謝活動,另外,污水中溫度的改變可引起其他環境因子的變化,從而影響微生物的生命活動,參與活性污泥生物處理過程的微生物多為嗜溫菌,適宜的溫度范圍為10~45℃,通常設計的活性污泥法的溫度范圍為10~30℃。
⑸有毒物質
許多有毒物質對活性污泥微生物具有一定的影響,例如,重金屬離子對微生物產生毒性作用,它們可以和細胞中的蛋白質結合,使蛋白質變性或沉澱;有些有毒的有機物能促使菌體蛋白凝固,並能對某些酶系統進行抑制,破壞細胞的正常代謝,另外,有的有機物本身的殺菌能力很強。
4、活性污泥法的基本工藝參數
主要有負荷(包括污泥負荷和容積負荷)、水力停留時間、污泥齡、污泥迴流比等。