導航:首頁 > 污水知識 > 菊酯類廢水

菊酯類廢水

發布時間:2024-09-18 05:48:25

㈠ 氯氟醚菊酯對人體有什麼危害

氯氟醚菊酯是吸入和觸殺型殺蟲劑,對殺滅蚊、蠅等害蟲效果好。對人屬於低毒,如果誤吸,應當立即轉移至空氣清新處,嚴重者給予吸氧並就醫。一般低含量的氯氟醚菊酯可以很快的被人體代謝掉,但是不要長期接觸。

菊酯是滅蚊產品的主要成分,是一種能夠有效殺死蚊蠅的農葯,有天然菊酯及化學合成菊酯。

天然菊酯的主要成分為除蟲菊素,化學合成的菊酯稱為擬除蟲菊酯,種類較多,有氯菊酯、胺菊酯、氯氰菊酯、溴氰菊酯、右旋丙烯菊酯、富右旋反式丙烯菊脂、四氟甲醚菊酯、氯氟醚菊酯、四氟苯菊酯、甲氧卞氟菊酯、炔丙菊酯等等,這些成分都屬於世界衛生組織推薦可用於防治衛生害蟲及其媒介的農葯。

㈡ 農葯廢水的農葯廢水處理方法

光催化法
銳鈦型的TiO2 在紫外光的照射下能產生氧化性極強的羥基自由基,能夠氧化降解有機物,使其轉化為CO2、H2O以及無機物,降解速度快,無二次污染,為降解處理農葯廢水提供了新思路 。對於光催化降解有機物目前關注的問題,一方面是降解過程中的影響因素和降解過程的轉化問題 ,對納米TiO2 的固載化和反應分離一體化成為光催化領域中具有挑戰性的課題之一,另一方面是提高制備催化劑催化效率的問題。
陳士夫等在玻璃纖維、玻璃珠、玻璃片上負載TiO2 薄膜光催化劑,並用於有機磷農葯的降解,取得了滿意的結果。梁喜珍通過研究TiO2 光催化降解有機磷農葯樂果廢水的影響因素,獲得了適宜的工藝條件。潘健民通過對納米TiO2 及其復合材料光催化降解有機磷農葯進行的研究,分析了在不同催化劑、不同濃度AgNO3 浸漬、不同實驗裝置條件下的光催化降解效果,說明TiO2 表面擔載微量的Ag後,不僅能提高納米TiO2 催化活性,而且有較好的絮凝作用,使TiO2 與處理後的水易分離,後處理更方便。葛湘鋒研究發現光催化降解在一定條件下符合零級動力學反應模式,而且反應速率常數和反應物起始濃度也呈線形關系,當反應物濃度增長過快達到一定值時,其反應速率常數明顯下降,反應物濃度過高時,則降解反應不再符合零級反應。
目前採用的光催化體系多為高壓燈、高壓氙燈、黑光燈、紫外線殺菌燈等光源,能量消耗大。若能對納米TiO2 進行有效、穩定地敏化,擴展其吸收光譜范圍,能以太陽光直接作為光源, 則將大大降低成本。
超聲波技術
超聲波是頻率大於20 kHz的聲波,超聲波誘導降解有機物的原理是在超聲波的作用下液體產生空化作用,即在超聲波負壓相作用下,產生一些極端條件使有機物發生化學鍵斷裂、水相燃燒、高溫分解 或自由基反應。
鍾愛國等研究表明,在甲胺磷濃度為1. 0 ×10- 4 mol ·L - 1、起始pH2. 5、溫度30 ℃、Fe2 + >50 mg·L - 1、充O2 至飽和的條件下,用低頻超聲波(80W·cm- 2 )連續輻照120 min,甲胺磷去除率達到99. 3% ,乙醯甲胺磷的去除率達到99. 9%。孫紅傑等研究了各種因素超聲波頻率、功率、聲強、變幅桿直徑和溶液初始pH等對超聲降解甲胺磷農葯廢水的影響。Kotronarou等得出對硫磷在超聲條件下可以被完全降解為PO43 - 、SO42 - 、NO3- 、CO2 和H+ ,而在反應溫度為20 ℃、pH為7. 4時,對硫磷無催化水解半衰期為108 d,其有毒代謝產物對氧磷水解半衰期為144 d。Cristina等對馬拉磷農葯在超聲波輻射下, 82μmol·L - 1的馬拉磷溶液30 min內pH從6下降到4, 2 h內所有的馬拉磷全部降解,產物均為無機小分子。
蔣永生、傅敏等報道了用超聲波降解模擬廢水中低濃度樂果的試驗表明,輻射時間延長,降解率增加,加入H2O2 可明顯提高樂果的降解率,在溶液初始濃度較低的范圍內,降解速率隨濃度增大而加快,
濃度增大到一定值後,降解速率變化不明顯,超聲降解時溶液溫度控制在15~60 ℃為宜。謝冰等對久效磷和亞磷酸三甲酯生產過程中產生的廢水進行了超聲氣浮預處理,可降低其COD和毒性,提高其可生化性,再經以光合細菌為主的生化處理,可使其COD降至200 mg·L - 1。
王宏青等研究表明: 滅多威經超聲作用35min,可被完全轉換為無機物,其降解過程為假一級反應;濃度增加時,降解減慢; Fe2 +和H2O2 對降解有促進作用,且Fe2 +促進作用比H2O2 的大;採用不同氣體飽和溶液時,降解率的大小順序為Ar >O2 >Air >N2。紅外光譜表明降解產物為SO42 - 、NO3- 和CO2。
目前有關超聲輻射降解有機污染物的研究,大多屬於實驗室研究,還缺乏系統的研究,更缺少中試數據。
生物法
在國內,農葯廠家大多建有生化處理裝置,但目前幾乎沒有一家能夠獲得理想的處理效果。因此,對這類廢水的生化處理研究是十分必要的。已有大量研究表明真菌、細菌、藻類等微生物對有農葯有很好的降解作用。
程潔紅從土壤中分離得到以多菌靈生產農葯廢水為惟一碳源生長的13株菌,經鑒定為假單胞菌屬( Pseudom onas sp. ) ,研究了SBR 工藝運行的最佳條件,所篩選的菌株對多菌靈農葯廢水的COD去除率為52. 3%。張德詠,譚新球從生產甲胺磷農葯的廢水中篩選具有促生活性及可降解甲胺磷的光合細菌菌株, 培養後第7 d, 該菌株可降解甲胺磷(65. 2% , 500 mg·L - 1和49. 6% , 1 000 mg·L - 1 ) ,樂果(45. 4% , 400 mg·L - 1 ) ,毒死蜱(51. 5% , 400 mg·L - 1 ) ,該菌株也能夠以三唑磷、辛硫磷作為惟一碳源生長。
生物膜法將微生物細胞固定在填料上,微生物附著於填料生長、繁殖,在其上形成膜狀生物污泥。與常規的活性污泥法相比,生物膜具有生物體積濃度大、存活世代長、微生物種類繁多等優點,尤其適宜於特種菌在廢水體系中的應用。王軍、劉寶章利用半軟性填料進行掛膜,處理菊酯類、雜環類綜合農葯廢水。當進水CODCr為6 810、3 130、1 890mg·L - 1時,經過24 h的作用,細菌膜對CODCr的降解率分別達到24. 8%、43. 5%、53. 4%。
電解法
鐵炭微電解法是絮凝、吸附、架橋、卷掃、共沉、電沉積、電化學還原等多種作用綜合效應的結果,能有效地去除污染物提高廢水的可生化性。新產生的鐵表面及反應中產生的大量初生態的Fe2 +和原子H具有高化學活性,能改變廢水中許多有機物的結構和特性,使有機物發生斷鏈、開環;微電池電極周圍的電場效應也能使溶液中的帶電離子和膠體附集並沉積在電極上而除去;另外反應產生的Fe2 + 、Fe3 +及 其水合物具有強烈的吸附絮凝活性,能進一步提高處理效果。
雍文彬採用鐵屑微電解法能有效去除農葯生產廢水中的COD、色度、As、氨氮、有機磷和總磷,去除率分別可達76. 2%、80%、69. 2%、55. 7%、82. 7%和62. 8%。張樹艷採用鐵炭微電解法對幾種農葯配水進行處理,試驗結果表明,最佳反應條件下,廢水的CODC r 去除率都可達67%以上;最佳反應條件:鐵/水比為(0. 25~0. 375) ∶1,鐵/炭比為( 1~3) ∶1, pH3~4,反應時間1~1. 5 h。廢水經微電解處理,然後進行Fenton試劑氧化,則微電解出水中Fe2 + 可作為Fenton的鐵源,且微電 解時有機污染物的初級降解也有利於後續Fenton反應的進行。吳慧芳採用微電解和Fenton試劑氧化兩種物化手段對菊酯、氯苯BOD5 /CODCr = 0. 03)和對鄰硝氯苯(BOD5 /CODCr = 0. 05) 3種廢水按比例配製而成的綜合農葯廢水進行預處理,結果表明:在廢水pH為2~2. 5時,經微電解處理後,BOD5 /CODCr比值達0. 45以上,可生化性提高; Fenton試劑對綜合農葯廢水CODCr去除率為60%左右,色度去除率接近100%。劉占孟以活性炭-納米二氧化鈦為電催化劑,對甲胺磷溶液的電催化氧化降解規律進行研究表明,該工藝能有效去除廢水中的有機物,納米二氧化鈦催化劑的催化效果顯著。電解效果隨著電解時間的延長、催化劑的增加而升高,低pH有利於電催化氧化過程中H2O2 和·OH 的生成。王永廣採用電解/UASB /SBR工藝處理生化性差、氯離子濃度高的氟磺胺草醚農葯廢水。設計電流密度取30. 0 A·m- 2 ,該工程的電費為2. 30 元·m- 3 ,葯劑費為0. 30 元·m- 3 ,人工費為1. 50元·m- 3 ,運行成本為4. 10元·m- 3 , COD去除率> 97%。
氧化法
深度氧化技術(AOPs)可通過氧化劑的組合產生具有高度氧化活性的·OH,被認為是處理難降解有機污染物的最佳技術。
引入紫外線、雙氧水聯合作用和調控反應體系pH,可進一步提高臭氧深度氧化法的效率。陳愛因研究表明,紫外光催化臭氧化降解農葯2, 4-二氯苯氧乙酸(2, 4- D)廢水成效顯著,臭氧/紫外(UV)深度氧化法(比較單獨臭氧化、臭氧/紫外、臭氧/雙氧水、臭氧/雙氧水/紫外4種臭氧化過程)是最好的臭氧化處理方法。2, 4- D 200 mg·L - 1的水樣,反應30min, 2, 4- D降解完全, 75 min時礦化率達75%以上。鹼性反應氛圍有利於臭氧化反應進行。雙氧水的引入對2, 4- D降解無明顯促進作用,這是因為雙氧水分解消耗OH- ,沒有緩沖的反應體系pH降低,限制了雙氧水的分解和·OH自由基鏈反應。表明添加H2O2 對光解效果有一定改善作用,投加量達到75 mg·L - 1時,水樣的COD去除率由零投加時的20%提高到40% ,但過量投加對處理效果沒有進一步促進作用。曝氣能促進光解效果,特別對UV /Fenton工藝作用更為顯著,光解水樣2 h後,曝氣條件下的COD 去除率可從不曝氣條件下的30%提高到80%。
催化濕式氧化能實現有機污染物的高效降解,同時可以大大降低反應的溫度和壓力,為高濃度難生物降解的有機廢水的處理提供了一種高效的新型技術。催化劑是催化濕式氧化的核心,諸多學者致力於研究開發新型高效的催化劑。韓利華等以Cu和Ce為活性組分,制備了Cu /Ce復合金屬氧化物,比較了均相-多相催化劑的催化性能。韓玉英在催化濕式氧化法處理吡蟲啉農葯廢水中,分別用硝酸亞鈰和硝酸銅作催化劑,反應一定時間後COD去除率分別達到80%和95. 5%。用硝酸銅作催化劑處理吡蟲啉農葯廢水具有較高的活性,但Cu2 + 有較高的溶出量。張翼、馬軍在廢水中加入2種自製的催化劑,結果表明,只用臭氧處理的情況下7 d後有機磷的去除率為78. 03%; 在催化劑A 存在下, 去除率可達93. 85%;在催化劑B存在下,去除率可達為88. 35%。在室溫和中性介質中均屬於一級反應。ClO2 是一種強氧化劑,鹼性條件下氰根(CN- )先被氧化為氯酸鹽,氯酸鹽進一步被氧化為碳酸鹽和氮氣,從而徹底消除氰化物毒性。陳莉榮將含氰農葯廢水空氣吹脫除氨後,採用ClO2 作為氰化物的氧化劑,氰化物濃度為60~80 mg·L - 1 , pH為11. 5左右時,按ClO2 ∶CN- ≥3. 5 (質量比)投葯,氰化物的去除率達97%以上,氧化後廢水經生物處理系統進一步處理後各項指標都能達排放標准要求。

㈢ 現在農業面源污染最常用的治理技術是什麼

農村生活污水治理技術
近20年來, 國外在農業面源污染控制實踐中, 農村生活污水治理研究得到了較大發展。國內在消化、吸收國外先進技術的基礎上, 對生活污水處理技術進行了集成及創新, 尤其針對我國農村分散式生活污水處理, 開展了技術研究與工程實踐, 取得了較好進展。
人工濕地污水處理系統是一種研究較為廣泛的污水處理系統。它是在自然濕地基礎上發展起來的污水處理生態工程技術, 利用自然生態系統中的物理、化學和生物的三重協同作用來實現對污水的凈化[5−6]。澳大利亞科學和工業研究組織(CSIRO)研製的「FILTER」污水處理系統則是一種「過濾、土地處理與暗管排水相結合的污水再利用系統」。其特點是過濾後的污水都匯集到地下暗管排水系統中, 並設有水泵, 可以控制排水暗管以上的地下水位以及處理後污水的排出量[7]。「FILTER」系統對生活污水的處理效果好, 其運行費用低, 特別適用於土地資源豐富、可以輪作休耕的地區, 或是以種植牧草為主的地區。毛細管滲濾溝污水處理, 是一種基於土地的地下污水滲濾處理系統, 它利用了自然凈化能力, 是一種簡單、高效的小規模污水處理工藝, 特別適用於污水管網不完備的地區, 是一項處理分散排放的污水的實用技術。
蚯蚓生態濾池處理系統是近年在法國和智利發展起來的一項針對農村生活污水的處理技術, 該工藝僅通過向土壤處理系統中接種蚯蚓, 改善生態濾池的處理環境, 提高污水處理效率, 適宜用於農村生活污水處理[8]。李軍狀等[9]採用塔式蚯蚓生態濾池處理系統對集中型農村生活污水進行處理, 該系統對COD、NH4+-N、TN和TP的平均去除率分別為86.7%、91.3%、72.4%和96.2%。不過, 如何長期保持蚯蚓良好的活性, 是該技術面臨的一個重要問題。另外, 對蚯蚓生態濾池處理系統的長期運行效果, 尚需檢驗。
穩定塘處理系統是由美國加州大學伯克利分校的Oswald提出的, 是一種利用天然凈化能力的生物處理構築物的總稱, 主要利用菌藻的共同作用處理廢水中的有機污染物[10]。Babu等[11]的研究證明, 其建造的藻類穩定塘的主要除N機理是硝化−反硝化、藻類對N的利用以及礦化作用。趙學敏等[12]對滇池流域大清河生物穩定塘系統中的水質凈化效果進行了分析, 結果表明, 生物穩定塘系統對TN、TP、NH4+-N、BOD5和COD的去除率分別達29.29%、48.68%、33.68%、68.14%和71.25%。
生物膜處理技術是近幾十年來得到迅速發展的污水處理方法。生物膜法就是利用微生物分解功能, 採取人工措施來創造更有利於微生物生長和繁殖的環境, 使微生物大量繁殖, 以提高對污水中有機物的氧化降解效率。吳迪等[13]對改進後的「一體化生物膜技術」處理農村生活污水進行了實際應用, 監測結果表明, 其對COD、BOD、NH4+-N、TN、TP和SS平均去除率分別為75.6%、85.9%、86.7%、63.9%、69.3%和85.5%。吳永紅等[14]系統研究了自然生物膜對於N、P等營養元素的去除效果和機理。其N、P去除機理首先是生物膜利用沉積於膜上的有機物為營養物質, 將一部分物質轉化為細胞物質, 進行生長繁殖, 成為生物膜中新的活性物質; 其次由於生物膜的蓬鬆的絮狀結構, 微孔多, 表面積大, 具有很強的吸附能力。
2.2 生活垃圾和農業廢棄物處理技術
生活垃圾、農作物秸稈、畜禽養殖廢棄物等是我國農村主要的固體廢棄物, 實現農村固體廢棄物的資源化是當前農村生態環境建設的重要內容。由於生活垃圾來源和成分復雜, 目前的主要處理方式以「村收集−鎮轉運−縣(市)集中處理」為主, 大部分被集中填埋或焚燒, 少部分與農作物秸稈、畜禽養殖廢棄物等進行堆肥化處理。高溫堆肥過程中如何減少N的損失是高溫堆肥要解決的關鍵技術。
農作物秸稈是農村主要的固體廢棄物, 目前其資源化率還比較低, 部分地區農作物秸稈的焚燒已導致嚴重的生態環境問題, 尤其在我國的東部地區。目前, 農作物秸稈的處理以還田為主, 包括部分還田或全量還田。隨著作物收獲機械的改進, 秸稈全量還田已成為主要還田方式。此外, 秸稈打捆收獲後用作能源、建築材料、花卉盆缽等新型資源化方式也已形成一定的規模。
畜禽糞便是農業面源污染的主要來源, 已經成為經濟發達地區或水環境敏感地區優先控制的污染源。在中國的傳統農業中, 畜禽糞便是優質的農家肥, 不僅能提供農作物生長所需的養分, 也能改善土壤物理化性質, 是中國農業數千年持續發展的重要物質基礎。畜禽糞便資源化的主要途徑是農肥化, 固體部分經發酵後生產優質有機肥, 再進行還田以實現循環利用。液體部分目前主要處理方式包括厭氧發酵生產沼氣, 或直接進入污水處理工程進行凈化, 或與農村的固體廢棄物如秸稈、生活垃圾等進行聯合發酵。其中沼液的安全處置是當前急需要解決的關鍵問題。
2.3 農業化學品減量化技術 2.3.1 化肥減量化技術
我國是世界上化肥施用量最多的國家, 肥料的平均利用率只有30%左右, 大多數養分隨徑流、滲漏和揮發等途徑損失掉了, 不僅浪費了資源, 而且
加劇了水體富營養化。因此, 根據不同地區的實際情況研究減量施肥技術具有重大的意義。目前主要的化肥減量技術有以下幾種:
氮肥運籌優化技術: 在施氮量相等的情況下, 合理調整基追肥的分配比例, 如太湖流域的稻田土壤, 基於目前常規施肥量, 將基肥施用量削減20%, 可有效地協調當地的經濟效益和環境效益[15]。Qiao等[16]的研究證實, 在太湖地區水稻產區通過兩年連續試驗, 消減50%的施氮量(相對於常規施氮量)並未顯著影響水稻產量。何傳龍等[17]在巢湖地區根據蔬菜地養分供應能力和甘藍的營養特性, 運用減量平衡施肥技術, 使肥料施用量減少30%, N、P、K肥利用率分別提高27.3%、23.4%和23.5%, N、P淋失量分別減少90.0%、78.4%。但是此類研究一般局限於較短時間, 對於長期減量施肥對作物產量有何影響, 尚需進一步探明。
種植制度優化技術: 比如稻麥輪作制中引入豆科綠肥, 既可降低旱季的施氮量, 又可補充稻季的氮素。在太湖地區進行的水稻−紫雲英輪作試驗結果表明, 冬季將小麥改為紫雲英, 稻季不施用化學氮肥, 水稻產量可達到農戶常規產量的95%左右, 如果補充農戶施氮量的30%, 則可獲得與農戶正常產量相當的產量, 或略有增產[16]。王靜等[18]在滇池流域蔬菜產地的調查表明, 合理的輪作模式可減少蔬菜地N、P的盈餘量。
緩控釋等新型肥料技術: 緩控釋肥料中養分的釋放與作物養分需求比較吻合, 養分的釋放供應量前期不過多, 後期不缺乏, 具有「削峰填谷」的效果, 可以大大降低向環境排放的風險。田琳琳等[19]在太湖流域大田蔬菜地的試驗結果表明, 在蔬菜生產中, 「低量控釋肥+低量化肥」是兼具經濟效益和環境效益的施肥模式。但是目前緩控釋肥費用相對普通化肥較高, 限制了其廣泛使用。
施加土壤改良劑控制N、P流失: 生物質炭(biochar)由於其良好的吸附性能、低廉的成本以及良好的生物親和性, 將其運用於農田營養鹽釋放控制, 受到研究人員的關注[20]。Ding等[21]在農田表層20 cm的土壤施加0.5%的生物質炭, 可以減少15.2%的NH4+-N損失量。姬紅利等[22]以滇池設施農業土壤和坡耕地土壤為研究對象, 採用外源施用土壤改良劑(硫酸亞鐵、硫酸鋁和聚丙烯醯胺)和土壤消毒劑(五氯硝基苯)的辦法, 研究了土壤改良劑對土壤解吸過濾液中TP和TDP濃度變化的影響。野外田間試驗表明: 施加改良劑後, 徑流雨水中TP和TDP值明顯降低, 上述土壤改良劑的施用對降低P流失具有明顯效果。但是其經濟性與環境風險如何尚待進一步研究。 2.3.2 農葯減量化與殘留控制技術
在化學農葯減量施用方面, 當前主要發展趨勢是由化學農葯防治逐漸轉向非化學防治技術或低污染的化學防治技術。近年來, 江蘇省多家單位聯合開展水稻化學農葯污染控制技術研究, 針對水稻螟蟲、灰飛虱、條紋葉枯病與紋枯病等重大病蟲害, 研究開發了多項無公害關鍵技術, 在水稻核心示範區減少了30%農葯用量。盧仲良等[23]選用高效低毒的三唑磷、丙溴磷、井岡黴素、噻嗪酮、毒死蜱等葯劑進行施葯, 增產6.97%。在農葯殘留生物降解方面, 國內外做了很多研究工作, 包括細菌、真菌、放線菌等各種降解農葯的微生物菌株相繼被分離和鑒定, 用以降解有機磷、有機氯和三嗪類除草劑、氨基甲酸酯類、擬除蟲菊酯類等多種農葯。近年來伴隨著基因工程和分子生物學的發展, 構建高效工程菌是當前研究的熱點, 將高效降解農葯酶的基因構建到載體上, 經轉化獲得工程菌, 以期提高具降解作用的特定蛋白或酶的表達水平, 從而提高降解活性。但是目前的研究仍然存在不足, 大多數研究以實驗室研究為主, 降解機理研究不夠深入, 中間產物難以檢測, 技術零散、集成度低、配套性差和展示度低等仍然是目前我國集約化農田農葯減量化與殘留控制需求中的突出問題。
2.4 污染物質的生態攔截技術
農業面源污染物質大部分隨降雨徑流進入水體, 在其進入水體前, 通過建立生物(生態)攔截系統, 有效阻斷徑流水中的N、P等污染物進入水環境, 是控制農業面源污染物的重要技術手段。國外主要是設置寬廣的生物隔離帶來控制N、P的徑流遷移, 如加拿大一種「草地−樹木過濾帶系統」, 可以顯著降低徑流的污染物含量[25]。楊林章等[26]結合太湖地區實際情況提出了生態攔截型溝渠系統, 它主要由工程部分和植物部分組成, 能減緩流速, 促進流水攜帶顆粒物質的沉澱, 有利於構建植物對溝壁、水體和溝底中逸出養分的立體式吸收和攔截, 從而實現對農田排出養分的控制。溝渠系統對農田徑流中TN、TP的去除效果分別達到48.1%和40.2%。但是, 在生態溝渠的農田規劃和設計標准、兩側及岸邊植物品種篩選及空間配置技術、水生經濟植物的品種篩選及空間配置技術、浮床植物的肥葯管理技術、浮床植物殘體的再利用技術以及植物的高效N、P利用機制等的研究還需要進一步拓展和深化。

㈣ 氯氰菊酯生產過程中產生的廢水的危害

氯氰菊酯是一種擬除蟲菊酯類殺蟲劑,生物活性較高,具有觸殺和胃毒作用。殺蟲譜廣、擊倒速度快,殺蟲活性較氯氰菊酯高。適用於防治棉花、蔬菜、果樹、茶樹、森林等多種植物上的害蟲及衛生害蟲。氯氰菊酯在生產過程中,每噸原葯產生廢水6噸,COD:80000-100000mg/L, 總氰化合物(CN-):50mg/L,氰化物有劇毒,我國污水綜合排放標准(GB 8978-1996)一級標准要求總氰化物(CN-)的限額允許排放濃度為0.5 mg/L,但是,國內外至今沒有成熟有效的工業化治理方法。此廢水中含氰化鈉、間苯氧基苯甲醛、氯氰菊酯、氯氰菊酯等多種有毒有害污染物,該廢水濃度高、對微生物毒性作用大,生物降解性差,屬高濃度、難降解類農葯廢水。

在先將廢水的pH值,用硫酸或鹽酸調節為2-3左右,然後在10-100℃溫度條件下,向廢水中滴加10-40%氯酸鈉溶液進行氧化反應0.5-10小時。將氯酸鈉氧化後的廢水,用氫氧化鈉或氫氧化鈣或氧化鈣,調節pH值為913左右,然後通入二氧化氯進行氧化反應0.5-6小時。

經過二氧化氯氧化後的廢水,用氫氧化鈉或氫氧化鈣或氧化鈣,調節pH值為9-14左右,然後通入臭氧進行氧化反應0.5-9小時。

這種氯氰菊酯廢水處理方法可有效降解氯氰菊酯廢水難生物降解的有機物,COD去除率高達到90%,總氰化物(CN-)≤0.5 mg/L,而且使處理後廢水的可生化性大大提高,廢水的BOD5/COD(B/C)由0.06提高到 0.38,提高了氯氰菊酯廢水的可生化性。

㈤ 污水處理中微電解的原理

微電解技術是處理高濃度有機廢水的一種理想的工藝,同時又被稱為內電解法。在不同點的情況之下,利用填充在廢水中的微電解材料自身生產的一點二伏的電位差對廢水進行點解處理,從而達到降解有機污染物的目的,當系統桶水之後設備中會形成無數的微電池系統,在作用空間中構成一個電場。

微電解的工作原理基於電化學,氧化還原,物理吸附以及絮凝沉澱的共同作用對於廢水進行處理。該方法適用范圍廣、處理的效果好、成本低廉、操作維護方便、不需要消耗電力資源等優點。本工藝用於難降解高濃度廢水的處理可以大幅度的降低cod和色度,提高廢水的可生化性,同時可以對氨氮的脫除具有很好的效果。傳統上的微電解工藝所採用的微電解材料一般為鐵屑和木炭,使用之前要加酸鹼活化,使用的過程中很容易鈍化板結,同時又因為鐵與碳是物理接觸,所以他們之間很容易形成隔離層使微電解不能繼續進行而失去作用,這就導致了頻繁的更換為電解材料,不但工作量大,成本高同時還影響了廢水的處理效果和效率。
二、鐵碳微電解原理鐵炭填料反應原理(即鐵炭填料處理高難度工業有機廢水原理):
(1)電子流動:利用鐵元素和碳元素之間的電位差,鐵元素與碳元素之間存在一個自然地1.4V的電位差。當鐵碳填料浸泡在廢水溶液中的時候,廢水溶液充當導電溶液,廢微電解填料價格多少水中的污染物質充當電解質。在鐵碳之間自然電位差形成的微弱電場之下,鐵會釋放出電子,電子在電場的作用之下由陽極向陰極移動。電子在移動的過程中會有穿過污染物質的概率,特別是長鏈物質或者是含有苯環的物質被電子穿過的概率更高。長鏈物質或者是含有苯環物質的碳鏈是通過成對電子相互連接的,當溶液中的單個電子穿插的時候,單個電子就會被碳鏈中的成對電子吸引住,從而微電解填料價格多少形成3電子結構,而這種3電子結構是一種非常不穩定的結構,存在一定的時間之後這種3電子結構就會自動爆炸,從而長鏈物質被分成2段。電子繼續穿插,鍛煉之後的碳鏈又會被分割,這樣碳鏈就會越來越短。這樣難降解物質就會轉化為容易降解的物質。同時能夠降低COD。
(2)還原性:當鐵碳填料浸泡在廢水溶液中的時候,作為陽極的鐵會失去電子從而變成鐵離子,新生成的鐵離子具有非常強的還原性,可以將廢水中的難降解物質進行還原反應。
(3)氧化性:電子在廢水中穿插的時候,也會穿過水分子,水分子被分解的時候就會產生大量的氫自由基、氧自由基、和氫氧自由基,這些新生態的自由基具有非常強的氧化性,可以將廢水中的有機物徹底氧化為二氧化碳和水。從而徹底降低COD。
(4)電泳:電子在廢水中運動的時候會吸附帶微電解填料價格多少正電的污染顆粒,吸附在電子上面的污染物質運動到陰極之後會被中和然後就會沉到底部被除去。
(5)絮凝作用:鐵失電子之後會形成鐵離子,新生態的鐵離子再加入鹼液之後會形成氫氧化亞鐵,氫氧化亞鐵是良好的絮凝劑,可以吸附廢水中的大量有機物絮凝沉澱。

閱讀全文

與菊酯類廢水相關的資料

熱點內容
盤式制動器在礦用提升機中的作用 瀏覽:802
納米銀超濾凈水機如何清洗 瀏覽:294
實驗室純水管什麼材質 瀏覽:286
無電飲水機的廢水出口怎麼控制 瀏覽:259
米家空氣凈化器pro如何重置濾芯 瀏覽:135
ph13的污水怎麼處理 瀏覽:332
生產廢水如何處理 瀏覽:641
用塑料箱做過濾器 瀏覽:182
離子交換色譜的主要洗脫方式有 瀏覽:226
改造廢水處理設備招標書 瀏覽:480
污水處理廠對居民有影響該怎麼辦 瀏覽:298
凈水器真能過濾水嗎 瀏覽:344
包頭陽等離子交換樹脂價格 瀏覽:198
樹脂離子交換計算題 瀏覽:518
污水排到牆外有什麼責任 瀏覽:993
洛陽污水處理廠有多少年 瀏覽:763
工業廢水防治工程合同模板 瀏覽:17
魚缸AC過濾材料 瀏覽:965
浴室里的水垢怎麼清理 瀏覽:388
天之源和龍潭凈水器哪個好 瀏覽:383