導航:首頁 > 污水知識 > 污水nh2n是什麼意思

污水nh2n是什麼意思

發布時間:2024-09-02 18:46:54

污水處理接觸氧化池怎樣培菌最好

在工業廢水處理工程中常用培養活性污泥(菌種)的方法為:
1. 向好氧池注入清水(同時引入生活污水)至一定水位,並注意水溫。

2. 按風機操作規程啟動風機,鼓風。
3. 向好氧池投加經過濾的濃糞便水(當糞便水不充足時,可用化糞池和排水溝內的污泥補充。),使得污泥濃度不小於1000mg/L,BOD達到一定數值。
4. 有條件時可投加活性污泥的菌種,加快培養速度。
5. 按照活性污泥培養運行工藝對反應池進行曝氣、攪拌、沉降、排水。
6. 通過鏡檢及測定沉降比、污泥濃度,注意觀察活性污泥的增長情況。並注意觀察在線PH值、DO的數值變化,及時對工藝進行調整。
7. 測定初期水質及排水階段上清液的水質,根據進出水NH3-N、BOD、COD、NO3-、NO2-等濃度數值的變化,判斷出活性污泥的活性及優勢菌種的情況,並由此調節進水量、置換量、糞水、NH4Cl、H3PO4、CH3OH的投加量及周期內時間分布情況。
8. 注意觀察活性污泥增長情況,當通過鏡檢觀察到菌膠團大量密實出現,並能觀察到原生動物(如鍾蟲),且數量由少迅速增多時,說明污泥培養成熟,可以進生產廢水,進行馴化。
活性污泥的馴化步驟
1. 通過分析確認來水各項指標在允許范圍內,准備進水。
2. 開始進入少量生產廢水,進入量不超過馴化前 處理能力的20%。同時補充新鮮水、糞便水及NH4Cl。
3. 達到較好處理後,可增加生產廢水投加量,每次增加不超過10~20%,同時減少NH4CL投加量。且待微生物適應鞏固後再繼續增生產廢水,直至完全停加NH4Cl。同步監測出水CODcr濃度等指標,並觀察混合液污泥性狀。在污泥馴化期還要適時排放代謝產物,即泥水分離後上清液。
4. 繼續增加生產廢水投加量,直至滿負荷。滿負荷運行階段,由於池中已培養和保持了高濃度、高活性的足夠數量的活性污泥,池中曝氣後混合液的MLSS達到5000mg/1,此過程同步監測溶解氧,控制曝氣機的運行,並進行污泥的生物相鏡檢。
調試期間的監測和控制
在調試及運行過程有許多影響處理效果的因素,主要有進水CODcr濃度、pH值、溫度、溶解氧等,所以對整個系統通過感官判斷和化學分析方法進行監測是必不可少的。根據監測分析的結果對影響因素進行調整,使處理達到最佳效果。
1、溫度
溫度是影響整個工藝處理的主要環境因素,各種微生物都在特定范圍的溫度內生長。生化處理的溫度范圍在10~40℃,最佳溫度在20~30℃。任何微生物只能在一定溫度范圍內生存,在適宜的溫度范圍內可大量生長繁殖。在污泥培養時,要將它們置於最適宜溫度條件下,使微生物以最快的生長速率生長,過低或過高的溫度會使代謝速率緩慢、生長速率也緩慢,過高的溫度對微生物有致死作用。
2、pH值
微生物的生命活動、物質代謝與pH值密切相關。大多數細菌、原生動物的最適pH值為6.5~7.5,在此環境中生長繁殖最好,它們對pH值的適應范圍在4~10。而活性污泥法處理廢水的曝氣系統中,作為活性污泥的主體,菌膠團細菌在6.5~8.5的pH值條件下可產生較多粘性物質,形成良好的絮狀物。
3、營養物質
廢水中的微生物要不斷地攝取營養物質,經過分解代謝(異化作用)使復雜的高分子物質或高能化合物降解為簡單的低分子物質或低能化合物,並釋放出能量;通過合成代謝(同化作用)利用分解代謝所提供的能量和物質,轉化成自身的細胞物質;同時將產生的代謝廢物排泄到體外。
水、碳源、氮源、無機鹽及生長因素為微生物生長的條件。廢水中應按BOD5∶N∶P=100∶4∶1的比例補充氮源、含磷無機鹽,為活性污泥的培養創造良好的營養條件。
4、懸浮物質SS
污水中含有大量的懸浮物,通過預處理懸浮物已大部分去除,但也有部分不能降解,曝氣時會形成浮渣層,但不影響系統對污水的處理。
5、溶解氧量DO
好養的生化細菌屬於好氧性的。氧對好氧微生物有兩個作用:①在呼吸作用中氧作為最終電子受體;②在醇類和不飽和脂肪酸的生物合成中需要氧。且只有溶於水的氧(稱溶解氧)微生物才能利用。
在活性污泥的培養中,DO的供給量要根據活性污泥的結構狀況、濃度及廢水的濃度綜合考慮。具體說來,也就是通過觀察顯微鏡下活性污環保泥的結構即成熟程度,測量曝氣池混合液的濃度、監測曝氣池上清液中CODCr的變化來確定。根據經驗,在培養初期DO控制在1~2mg/l,這是因為菌膠團此時尚未形成絮狀結構,氧供應過多,使微生物代謝活動增強,營養供應不上而使污泥自身產生氧化,促使污泥老化。在污泥培養成熟期,要將DO提高到3~4mg/l左右,這樣可使污泥絮體內部微生物也能得到充足的DO,具有良好的沉降性能。在整個培養過程中要根據污泥培養情況逐步提高DO。
特別注意DO不能過低,DO不足,好氧微生物得不到足夠的氧,正常的生長規律將受到影響,新陳代謝能力降低,而同時對DO要求較低的微生物將應運而生,這樣正常的生化細菌培養過程將被破壞。
6、混合液MLSS濃度
微生物是生物污泥中有活性的部分,也是有機物代謝的主體,在生物處理工藝中起主要作用,而混合液污泥MLSS的數值即大概能表示活性部分的多少。對高濃度有機污水的生物處理一般均需保持較高的污泥濃度,本工程調試運行期間MLSS范圍在:4.4~5.6g/l之間,最佳值為4.8g/l左右。
7、進水CODcr濃度,進水中有機物濃度對處理影響很大。
8、污泥的生物相鏡檢
活性污泥處於不同的生長階段,各類微生物也呈現出不同的比例。細菌承擔著分解有機物的基本和基礎的代謝作用,而原生動物〈也包括後生動物〉則吞食游離細菌。污水調試運行期間出現的微生物種類繁多,有細菌、綠藻等藻類、原生動物和後生動物,原生動物有太陽蟲、蓋纖蟲、累校蟲等,後生動物出現了線蟲。調試運行後期混合液中固著型纖毛蟲,如累校蟲的大量存在,說明處理系統有良好的出水水質。
9、污泥指數SVI,正常運行時污泥指數在801/mg左右。

Ⅱ 現代污水處理有哪些常見的方法

1、物理處理法
物理處理法是通過物理作用, 以分離、 回收污水中不溶解的、 呈懸浮狀的污染物質(包括油膜和油珠), 在處理過程中不改變其化學性質。 常用的有過濾法、 沉澱法、 浮選法等。
(1) 過濾法:利用過濾介質截流污水中的懸浮物。 過濾介質有篩網、紗布、 粒物, 常用的過濾設備有格柵、篩網、微濾機等。
1) 格柵與篩網。 在排水工程中, 廢水通過下水道流人水處理廠, 首先應經過斜置在渠道內的一組金屬制的呈縱向平行的框條(格柵)、 穿孔板或過濾網(篩網), 使漂浮物或懸浮物不能通過而被阻留在格柵、 細篩或濾料上。
這一步屬廢水的預處理, 其目的在於回收有用物質;初步漫清廢水以利於以後的處理, 減輕沉澱池或其他處理設備的負荷;保護抽水機械, 以免受到顆粒物堵塞發生故障。 保護水泵和其他處理設備。格柵截留的效果主要取決於污水水質和格柵空隙的大小。 清渣方法有人工與機械兩種。柵渣應及時清理和處理。
篩網主要用於截留粒度在數毫米到數十毫米的細碎懸浮態雜物, 如纖維、紙漿、藻類等,通常用金屬絲、化纖編織而成,或用穿孔鋼板,孔徑一般小於5mm,最小可為0.2mm。 篩網過濾裝置有轉鼓式、 旋轉式、 轉盤式、 固定式振動斜篩等。 不論何種結構,既要能截留污物,又便於卸料及清理篩面 。
2)粒狀介質過濾(又稱彤、濾、 驚料過濾)。 廢水通過粒狀濾料(如石英砂)床層時,其中細小的懸浮物和肢體就被截留在濾料的表面和內部空隙中。 常用的過濾介質有石英砂、 無煙煤和石榴石等。 在過濾過程中濾料同時對懸浮物進行物理截留、 沉降和吸附等作用。 過濾的效果取決於濾料孔徑的大小、 濾料層的厚度、 過濾速度及污水的性質等因素。
當廢水自上而下流過粒狀濾料層時,位徑較大的懸浮顆粒首先被截留在表層濾料的空隙中,從而使此層濾料空隙越來越小,逐漸形成一層主要由被截留的團體顆粒構成的濾膜, 並由它起主要的過濾作用。 這種作用屬於阻力截留或篩濾作用。
廢水通過濾料層時,眾多的濾料表面提供了巨大的可供懸浮物沉降的有效面積,形成無數的小 「沉澱池」,懸浮物極易在此沉降下來。這種作用屬於重力 沉降。
由於濾料具有巨大的表面積, 它與懸浮物之間有明顯的物理吸附作用。此外,砂粒在水中常常帶有表面負電荷,能吸附帶正電荷的鐵、 鋁等肢體,從而在濾料表面形成帶正電荷的薄膜,並進而吸附帶負電荷的膠土和多種有機物等膠體,在砂粒上發生接觸絮凝。
(2)沉澱法。沉澱法是利用污水中的懸浮物和水的相對密度不同的原理, 藉助重力沉降作用使懸浮物從水中分離出來。 根據水中懸浮顆粒的濃度及絮凝特性(即彼此帖結聚團的能力)可分為四種:
1) 分離沉降(或自由沉降)。在沉澱過程中,顆粒之間互不聚合,單獨進行沉降。 顆位只受到本身在水中的重力和水流阻力的作用,其形狀、 尺寸、 質量均不改變,下降速度也不改變。
2)混凝沉澱(或稱作絮凝沉降)。 混凝沉降是指在混凝劑的作用下,使廢水中的膠體和細微懸浮物凝聚為具有可分離性的絮凝體,然後採用重力沉降予以分離去除。 混凝沉澱的特點是在沉澱過程中,顆粒接觸碰撞而互相聚集形成較大絮體,因此顆粒的尺寸和質量均會隨深度的增加而增大,其沉速也隨深度 而增加。
常用的無機混凝劑有硫酸鋁、 硫酸亞鐵、 三氯化鐵及聚合鋁;常用的有機絮凝劑有聚丙烯酷膠等,還可採用助凝劑如水玻璃、 石灰等 。
3)區域沉降(又稱擁擠沉降、 成層沉降)。 當廢水中懸浮物含量較高時,顆粒間的距離較小,其間的聚合力能使其集合成為一個整體,並一同下沉,而顆粒相互間的位置不發生變動,因此澄清水和混水間有一明顯的分界面,逐漸向下移動,此類沉降稱為區域沉降。加高濁度水的沉澱池和二次沉澱池中的沉降(在沉降中後期)多屬此類。
4)壓縮沉澱。當懸浮液中的懸浮固體濃度很高時,顆粒互相接觸、擠壓,在上層顆粒的重力作用下,下層顆粒間隙中的水被擠出,顆粒群體被壓縮。壓縮沉澱發生在沉澱池底部的污泥斗或污泥濃縮池中,進行得很緩慢。依據水中懸浮性物質的性質不同,設有沉砂池和沉澱池兩種設備。
沉砂池用於除去水中砂粒、煤渣等相對密度較大的元機顆粒物。沉砂池一般設在污水處理裝置前,以防止處理污水的其他機械設備受到磨損。
沉澱池是利用重力的作用使懸浮性雜質與水分離。它可以分離直徑為20~100µ,m以上的顆粒。根據沉澱池內的水流方向,可將其分為平流式、輻流式和豎流式三種。
①平流式沉澱池。廢水從池一端流人,按水平方向在池內流動,水中懸浮物逐漸沉向池底,澄清水從另一端溢出。
②輻流式沉澱池。池子多為圓形,直徑較大,一般在20~30m以上,適用於大型水處理廠。原水經進水管進入中心筒後,通過筒壁上的孔口和外圍的環形穿孔擋板,沿徑向呈輻射狀流向沉澱池周邊。由於過水斷面不斷增大,流速逐漸變小,顆粒沉降下來,澄清水從其周圍溢出匯入集水槽排出。
③豎流式沉澱池。截面多為圓形,也有方形和多角形的。水由中心管的下口流入池中,通過反射板的阻攔向四周分布於整個水平斷面上,緩緩向上流動。沉速超過上升流速的顆粒則沉到污泥斗,澄清後的水由四周的埋口溢出池外。
在污水處理與利用的方法中,沉澱(或上浮)法常常作為其他處理方法前的預處理。如用生物處理法處理、污水時,一般需事先經過預沉池去除大部分懸浮物質,以減少生化處理時的負荷,而經生物處理後的出水仍要經過二次沉澱池的處理,進行泥水分離以保證出水水質。
(3)浮選法。將空氣通人污水中,並以微小氣泡形式從水中析出成為載體,污水中相對密度接近於水的微小顆粒狀的污染物質(如乳化油等)附在氣泡上,並隨氣泡上升到水面,然後用機械的方法撇除,從而使污水中的污染物質得以從污水中分離出來。疏水性的物質易氣浮,而親水性的物質不易氣浮。因此有時為了提高氣浮效率,需向污水中加入浮選劑改變污染物的表面特性,使某些親水性物質轉變為疏水性物質,然後氣浮除去,這種方法稱為「浮選」。
氣浮時要求氣泡的分散度高,量多,有利於提高氣浮的效果。泡沫層的穩定性要適當,既便於浮渣穩定在水面上,又不影響浮渣的運送和脫水。產生氣 泡的方法有兩種:
1)機械法。使空氣通過微孔管、微孔板、帶孔轉盤等生成微小氣泡。
2)壓力溶氣法。將空氣在一定的壓力下溶於水中, 並達到飽和狀態, 然後突然減壓, 過飽和的空氣便以微小氣泡的形式從水中逸出。 目前廢水處理中的氣浮工藝多採用壓力溶氣法。
氣浮法的主要優點有:設備運行能力優於沉澱池, 一般只需15~20min即可完成固液分離, 因此它佔地少, 效率較高;氣浮法所產生的污泥較乾燥, 不易腐化, 且系表面刮取, 操作較便利;整個工作是向水中通人空氣, 增加了水中的潛解氧量, 對除去水中有機物、 藻類表面活性劑及臭味等有明顯效果, 其出水水質為後續處理及利用提供了有利條件。
氣浮法的主要缺點是:耗電量較大;設備維修及管理工作量增加, 運轉部分常有堵塞的可能;浮渣露出水面, 易受風、 雨等氣候因素影響。
除了上述兩種氣浮方法外, 目前較為常用的方法還有電解氣浮法。
(4)離心分離法。 含有懸浮污染物質的污水在高速旋轉時, 利用懸浮顆粒(如乳化油)和污水受到的離心力不同, 從而達到分離目的的方法。 常用的離心設備有旋流分離器和離心
2、化學處理法
向污水中投加化學試劑, 利用化學反應來分離、 回收污水中的污染物質,或將污染物質轉化為無害的物質。 該法既可使污染物與水分離, 回收某些有用物質, 也能改變污染物的性質, 如降低廢水的酸鹼度、 去除金屬離子、 氧化某些有毒有害的物質等, 因此可達到比物理法更高的凈化程度。 常用的化學方法 有化學沉澱法、 中和法、 氧化還原法和混凝法。
化學法處理的局限性如下:
由於化學處理廢水常採用化學葯劑(或材料), 處理費用一般較高, 操作與 管理的要求也較嚴格。
化學法還需與物理法配合使用。 在化學處理之前, 往往需用沉澱和過濾等手段作為前處理;在某些場合下,又需採用沉澱和過濾等物理手段作為化學處理的後處理。
( 1)化學沉澱法。
化學沉澱法是指向廢水中投加某些化學葯劑, 使其與廢水中的溶解性污染物發生五換反應, 形成難榕於水的鹽類(沉澱物)從水中沉澱出來, 從而降低或除去水中的污染物。化學沉澱法多用於在水處理中去除鈣離子、 鏡離子以及廢水中的重金屬離子, 如隸、 鍋、鉛、 缽等。 按使用的沉澱劑不同, 沉澱法可分為石灰法(又稱為氫氧化物沉澱法)、硫化物法和銀鹽法等。
水中Ca 2+、 Mg2+令 含量的總和稱總硬度, 可分為碳酸鹽硬度和非碳酸鹽硬度。碳酸鹽硬度可投加石灰使水中的Ca 2+和Mg2+形成CaC03和Mg (OH) 2沉澱而降低, 如需同時去除非碳酸鹽硬度, 可採用石灰-蘇打軟化法, 使Ca 2+和Mg2+ 形成CaC03 矛llMg ( OH) 2沉澱除去。 因此, 當原水硬度或鹼度較高時, 可先用化學沉澱法作為離子交換軟化的前處理, 以節省離子交換的運行費用。
去除廢水中的重金屬離子時, 一般採用投加碳酸鹽的方法, 生成的金屬離子, 碳酸鹽的溶度積很小, 便於回收。 如利用碳酸銷處理含鎊廢水。
ZnS04 + Na 2C03 一一→ZnC03 ↓+ NazS04
此法優點是經濟簡便, 葯劑來源廣, 因此在處理重金屬廢水時應用最廣。 存在的問題是勞動衛生條件差, 管道易結垢堵塞與腐蝕;沉澱體積大, 脫水困難。
(2)中和法。
中和法處理是利用酸鹼相互作用生成鹽和水的化學原理, 將廢水從酸性或鹼性調整到中性附近的處理方法。 對於酸或鹼的濃度大於3%的廢水, 首先應進 行酸鹼的回收。 對於低濃度的酸鹼廢水, 可採取中和法進行處理。
酸性污水的處理, 通常採用投加石灰、 苛性鍋、 碳酸鍋或以石灰石、 大理石作潔、料來中和酸性污水。 鹼性污水的處理, 通常採用投加硝酸、 鹽酸或利用二氧化碳氣體中和鹼性污水。 另外, 對於酸、 鹼性污水也可以用二者相互中和的辦法來處理。
(3)氧化還原法。
氧化還原法是通過化學葯劑與水中污染物之間的氧化還原反應, 將污水中的有毒有害污染物轉化為無毒或微毒物質的方法。 這種方法主要處理無機污染物, 如重金屬和氧化物的污染。 利用高健酸御、 液氯、 臭氧等強氧化劑或電極的陽極反應, 將廢水中的有害物質氧化分解為元害物質;利用鐵粉等還原劑或電極的陰極反應, 將廢水中的有害物質還原為無害物質;臭氧氧化法對污水進 行脫色、 殺菌和除臭處理;空氣氧化法處理含硫廢水;還原法處理含錦電鍍廢水等都是氧化還原法處理廢水的實例。
水處理常用的氧化劑有氧、 臭氧、 氯、 次氯酸等。 常用的還原劑有硫酸亞鐵、 亞硫酸鹽、 鐵屑、 鑄粉等。
(4)混凝法。
混凝法是在含不易沉降的細顆粒及膠體顆粒的廢水中加入電解質以破壞肢體的穩定性而使其聚沉。 常用的混凝劑有硫酸鋁、 硫酸亞鐵、 三氯化鐵、 聚乙烯亞股或聚丙烯酷膠等。 為加速混凝常伴隨加入助凝劑石灰、 活性硅膠、 骨膠等。
3、物理化學處理法
物理化學法(簡稱物化法), 是利用萃取、 吸附、 離子交換、 膜分離技術、氣提等物理化學的原理, 處理或回收工業廢水的方法。 它主要用分離廢水中無機的或有機的(難以生物降解的)溶解態或膠態的污染物質, 回收有用組分,並使廢水得到深度凈化。 因此, 適合於處理雜質濃度很高的廢水(用作回收利用的方法), 或是濃度很低的廢水(用作廢水深度處理)。利用物理化學法處理工業廢水前, 一般要經過預處理, 以減少廢水中的懸浮物、 油類、 有害氣體等雜質, 或調整廢水的pH值, 以提高回收效率、 減少損耗。同時, 濃縮的殘渣要 經過後處理以避免二次污染。常用的方法有萃取法、 吸附法、 離子交換法、 膜析法(包括滲析法、 電滲析法、 反滲透法、 超濾法等)。
(1)萃取法。
萃取法是向污水中加人一種與水不相溶而密度小於水的有機溶劑, 充分混合接觸後使污染物重新分配, 由水相轉移到溶劑相中, 利用溶劑與水的密度差別, 將溶劑分離出來, 從而使污水得到凈化的方法。再利用溶質與溶劑的沸點差將溶質蒸館回收, 再生後的溶劑可循環使用。使用的溶劑叫萃取劑, 提出的物質叫萃取物。 萃取是一種液-液相間的傳質過程, 是利用污染物(溶質)在水與有機溶劑兩相中的溶解度不同進行分離的。
在選擇萃取劑時, 應注意萃取劑對被萃取物(污染物)的選擇性, 即溶解能力的大小, 通常溶解能力越大, 萃取的效果越好;萃取劑與水的密度相差越大, 萃取後與水分離就越容易。常用的萃取劑有含氧萃取劑、 含磷萃取劑、 含氮萃取劑等 。 常用的萃取設備有脈沖篩板塔、 離心萃取機等。
(2)吸附法。
吸附法處理廢水是利用——種多孔性固體材料(吸附劑)的表面來吸附水中的一種或多種溶解污染物、 有機污染物等(稱為熔質或吸附質), 以回收或去除它們, 使廢水得以凈化。例如, 利用活性炭可吸附廢白水中的盼、 隸、 錯、氧等劇毒物質, 且具有脫色、 除臭等作用。吸附法目前多用於污水的深度處理, 可分為靜態吸附和動態吸附兩種方法, 即在污水分別處於靜態和流動態時進行吸 附處理。常用的吸附設備有固定床、 移動床和流動床等。
在廢水處理中常用的吸附劑有活性炭、 磺化煤、 木炭、 焦炭、 硅藻土、 木屑和吸附樹脂等。以活性炭和吸附樹脂應用較為普遍。一般吸附劑均呈鬆散多 孔結構, 具有巨大的比表面積。其吸附力可分為分子引力(范德華力)、 化學鍵力和靜電引力三種。水處理中大多數吸附是上述三種吸附力共同作用的結果。
吸附劑吸附飽和後必須經過再生, 把吸附質從吸附劑的細孔中除去, 恢復其吸附能力。再生的方法有加熱再生法、 蒸汽吹脫法、 化學氧化再生法(濕式氧化、 電解氧化和臭氧氧化等)、 溶劑再生法和生物再生法等。
由於吸附劑價格較貴, 而且吸附法對進水的預處理要求高, 因此多用於給水處理中。
(3)離子交換法。
離子交換法是利用離子交換劑的離子交換作用置換污水中的離子態污染物質的方法。隨著離子交換樹脂的生產和離子交換技術的發展, 由於效果良好, 操作方便, 近年來在回收和處理工業污水中的有毒物質方面, 得到一定的應用。如用陽離子交換劑去除(回收) 污水中的銅、鎳、鎘、鋅、汞、金、銀、鉑等重金屬。
離子交換法多用於工業給水處理中的軟化和除鹽, 主要去除廢水中的金屬 離子。 離子交換軟化法採用Na+交換樹脂。
(4)膜析法。
1) 電滲析法。電摻析法是在直流電場的作用下, 利用陰、 陽離子交換膜對溶液中陰陽離子的選擇透過性(即陽膜只允許陽離子通過, 陰膜只允許陰商子通過), 使一部分溶液中的離子遷移到另一部分溶液中去,使得溶液中的電解質與水分離, 從而達到濃縮、純化、分離的一 種水處理方法。電滲析法是在離子交換技術基礎上發展起來的新方法, 除用於污水處理外, 還可用於海水除鹽、制備去離子水(純水)等。
2)反滲透法。
反滲透法巳用於含重金屬廢水的處理、 污水的深度處理及海水淡化等。在世界淡水供應危機嚴重的今天, 反滲透法結合蒸館法的海水淡化技術前景廣闊。 它的另一重要用途是與離子交換系統聯用, 作為離子交換的預處理方法以制備去離子的超純水。在廢水處理中, 反滲透法主要用於去除與回收重金屬離子, 去除鹽、有機物、色度以及放射性元素等。
目前在水處理領域內廣泛應用的半透膜有醋酸纖維素 膜和聚酷膠膜磺化聚苯醋等高聚物。常用的反滲透裝置有管式、螺旋式、中空纖維式及板框式等。滲透水可重復利用。
4、生物處理法
生物處理法是利用自然環境中微生物的生物化學作用, 氧化分解溶解於污 水中或肢體狀態的有機污染物和某些無機毒物(如氟化物、硫化物), 並將其轉化為穩定無害的無機物, 從而使廢水得以凈化的方法。 此法具有投資少、效果好、運行費用低等優點, 在城市廢水和工業廢水的處理中得到最廣泛的應用。
現代生物處理法根據微生物在生化反應中是否需要氧氣, 分為好氧生物處 理和厭氧生物處理兩類。
(1)好氧生物處理法。
在有氧的條件下, 依賴好氧菌和兼氧菌的生化作用完成廢水處理的工藝稱為好氧生物處理法。 該法需要有氧的供應。 根據好氧微生物在處理系統中所呈現的狀態, 可分為活性污泥法和生物膜法。
1)活性污泥法是目前使用最廣泛的一種生物處理法。 該方法是向曝氣池中富含有機污染物並有細菌的廢水中不斷地通人空氣(曝氣), 在一定的時間後就會出現懸浮態絮狀的泥粒, 這實際上是由好氧菌(及兼性好氧菌)所吸附的有機物和好氧菌代謝活動的產物所組成的聚集體, 具有很強的分解有機物的能力,稱之為 「活性污泥」。從曝氣池流出的污水和活性污泥混合液經沉澱池沉澱分離後, 澄清的水被排放, 污泥作為種泥迴流到曝氣池, 繼續運作。 這種以活性污泥為主體的生物處理法稱為 活性污泥法」 。廢水在曝氣池中停留4~6h, 可除去廢水中的有機物(BOD6)約90%。 活性污泥法有多種池型及運行方式, 通常有普通活性污泥法、完全混合式表面曝氣法、吸附再生法等。
2)生物膜法是使污水連續流經固體填料(碎石、煤渣或塑料填料), 微生物在填料上大量繁殖, 形成污泥狀的膠膜稱為生物膜, 利用生物膜處理污水的方法,稱為生物膜法。生物膜主要由大量的菌膠團、真菌、藻類和原生動物組成。 生物膜上的微生物起到和活性污泥同樣的凈化作用, 吸附並降解水中的有機污 染物, 從填料上脫落的衰老的生物膜隨處理後的污水流入沉澱池, 經過沉澱池沉澱分離後, 使污水得以凈化。常用的生物膜法有生物濾池、生物接觸氧化池、生物轉盤等。
(2)厭氧生物處理法。
在無氧的條件下, 利用厭氧微生物的作用分解、污水中的有機物, 使污水凈化的方法稱為厭氧生物處理法。 近年來, 世界性的能源緊張, 使污水處理向節能和實現能源化的方向發展, 從而促進了厭氧微生物處理方法的發展。 一大批高效新型厭氧生物反應器相繼出現, 包括厭氧生物濾池、 升流式厭氧污泥床、 厭氧硫化床等。 它們的共同特點是反應器中生物團體濃度很高, 市泥齡很長, 因此處理能力大大提高, 從而使厭氧生物處理法所具有的能耗小、可以回收能源、 剩餘的污泥量少、 生成的污泥穩定而易處理、 對高濃度有機廢水處理效率高等優點得到充分體現。厭氧生物處理法經過多年的發展,已經成為污水處理的主要方法之一。
5、除磷、 脫氮
( 1) 除磷。 城市廢水中磷的主要來源是糞便、 洗滌劑和某些工業廢水, 以正磷酸鹽、 聚磷酸鹽和有機磷的形式溶解於水中。 常用的除磷方法有化學法和生物法。
1)化學法除磷。 利用磷酸鹽與鐵鹽、 石灰、 鋁鹽等反應生成磷酸鐵、 磷酸鈣、 磷酸鋁等沉澱, 將磷從廢水中排除。化學法的特點是磷的去除效率較高, 處理結果穩定, 污泥在處理和處置過程中不會重新釋放磷造成二次污染,但污泥的產量比較大。
2)生物法除磷。生物法除磷是利用微生物在好氧條件下, 對廢水中溶解性 磷酸鹽的過量吸收,沉澱分離而除磷。 整個處理過程分為厭氧放磷和好氧吸磷 兩個階段。
含有過量磷的廢水和含磷活性污泥進人厭氧狀態後,活性污泥中的聚磷商在厭氧狀態下, 將體內積聚的聚磷分解為無機磷釋放回廢水中。這就是 「 厭氧放磷」。聚磷菌在分解聚磷時產生的能量除一部分供自己生存外, 其餘供聚磷菌吸收廢水中的有機物,並在厭氧發酵產酸菌的作用下轉化成乙酸背,再進一步轉化為PHB (聚自-短基丁酸) 儲存於體內。
進入好氧狀態後, 聚磷菌將儲存於體內的PHB進行好氧分解, 並釋放出大 量能量,一部分供自己增殖, 另一部分供其吸收廢水中的磷酸鹽, 以聚磷的形式積聚於體內。這就是 「好氧吸磷」。在此階段, 活性污泥不斷增殖。 除了一部分含磷活性活泥迴流到厭氧池外, 其餘的作為剩餘污泥排出系統,達到除磷的目的。
(2) 脫氮。
生活廢水中各種形式的氮占的比例比較恆定:有機氮 50%~60%,氨氮40%~ 50%,亞硝酸鹽與硝酸鹽中的氮占 0~ 5%。 它們均來源於人們食物中的蛋白質。脫氮的方法有化學法和生物法兩大類。
1)化學法脫氮。包括氨吸收法和加氯法。
①氨吸收法。 先把廢水的pH值調整到10以上,然後在解吸塔內解吸氨
②加氯法。在含氨氮的廢水中加氯。通過適當控制加氯量, 可以完全除去水中的氨氮。為了減少氯的投加量, 此法常與生物硝化聯用, 先硝化再除去微量的殘余氨氮。
2)生物法脫氮。生物脫氮是在微生物作用下, 將有機氮和氨態氮轉化為氮氣的過程, 其中包括硝化和反硝化兩個反應過程。
硝化反應是在好氧條件下, 廢水中的氨態氮被硝化細菌 (亞硝酸菌和硝酸菌)轉化為亞硝酸鹽和硝酸鹽。 反硝化反應是在無氧條件下, 反硝化菌將硝酸鹽氮(N03-)和亞硝酸鹽氮(NH2-)還原為氮氣。因此整個脫氮過程需經歷好氧和缺氧兩個階段。

Ⅲ 請問,如何去除化工副產品中含硫有機物如二甲基二硫,以消除產品中的臭味謝謝!!

aa01有機廢水:
SUP7901 UASB-射流曝氣組合工藝處理有機工業廢水技術
採用生物反應動力學和流體動力學的最新設計計算原理與方法,應用高新生物技術,在低能耗下凈化有機廢水,將污染物轉化為沼氣加以利用,並數倍地降低系統的污染物產量。具有佔地少、節能、運行成本低、處理效率高等優點。應用范圍:大、中、小型肉類聯合加工廠處理屠宰廢水。也適用於處理工業有機廢水。技術轉讓。詳細資料備索。

SUP17185 難降解有機工業廢水高新生物處理技術與關鍵設備
研究開發出了包括難降解有機物高效降解菌、自固定化微生物反應器、可連續自動運行和控制的分置式膜-生物反應器和一體式膜-生物反應器中試成套工藝、鐵曝氣還原-厭氧-粉末活性碳活性污泥法組合工藝、SBRK工藝、酵母回收→絮凝→預脫氮硫→厭氧酸化→SBR→深度處理工藝等,並均已成功地應用於中試或示範工程,已建成七項示範工程。技術轉讓。詳細資料備索。

SUP1631 ACOX系列高濃度有機污水凈化裝置
該裝置是利用催化氧化的原因,將廢水中的有機物氧化分解,從而使廢水大幅度降低COD的一種高效污水處理裝置利用當今化學工程領域中的新技術,與相應的高效催化劑相結合,研製了三相催化氧化反應器,用於處理高濃度高色度工業有機廢水。該裝置具有應用范圍廣,耐沖擊,適應性強,操作方便,處理效果好,容積荷大,工程投資省,處理費用低等優越性。技術轉讓。資料備索。

SUP18347 富氧生物碳有機廢水凈化技術
技術特點:高氧生物碳是我校開發的一項新技術,主要用於有機廢水塗鍍處理及對微污染水源的預處理,以提高自來水水質的量,同時對工業廢水塗鍍處理廢水時用於生產節省水資源。市場前景:對缺水城市及微污染水的凈化有廣闊前景,使大部分有機廢水經該技術用於生產。效益分析:處理一噸水需能耗0.5度電。技術轉讓。詳細資料備索。

SUP6390 EASBR法處理有機磷甲基氯化物生產污水
本工藝用於有機磷農葯甲基氯化物生產污水等農葯污水,原污水COD6000mg/l,處理水COD小於150mg/l。原污水先經化學[E]預處理,稀釋5 - 10倍後進入催化酸化[A],再送入序列間歇活性污泥池[SBR],處理廠佔地、投資、處理成本比常規方法減少15、35和30%。技術轉讓。詳細資料備索。

SUP14819 膜法處理草漿黑液及鹼回用技術
本技術其處理工藝流程相對比較簡單,克服了原燃燒法鹼回收的高能耗缺點,降低了能耗。工藝操作和管理比較方便。相對而言,膜法處理鹼回用工藝,可以大幅度降低一次性投資,其一次性固定資產投資約為鹼回收的44%,能耗約為鹼回收的1/4;在其他技術經濟指標方面與1.7萬噸制漿能力的燃燒法鹼回收相近。技術轉讓。詳細資料備索。

SUP15294 2,3-酸生產廢水的治理與資源化
2,3-酸生產廢水酸性強,毒性大,難以生化降解。經NDA-708樹脂固定床工藝處理後,出水為無色透明液,CODcr<100mg/1,CODcr去除率>96%;出水2-萘酚和2,3-酸等萘系有機化合物<10mg/1,其去除率>99%;樹脂床經脫附,可回收2-萘酚和2,3-酸,回收率>95%。工程投資約100萬元。技術轉讓。資料備索。

SUP18498 蛋氨酸生產廢水處理技術
蛋氨酸生產過程中排放的廢水水質復雜,含有多種有機酸、醇、醛、酯及一些聚合物。開發成功了化學氧化-生化-絮凝處理流程與前絮凝-生化-後絮凝處理流程,均可使最終排水達到國家排放標准。兩種廢水處理流程可供生產與建設單位因地制宜選用。技術轉讓。詳細資料備索。

SUP18500 間戊二烯樹脂生產廢水處理技術
間戊二烯樹脂生產中洗滌工序排出含大量Al 3的廢水,很難用一般的絮凝沉降方法去除。開發成功加入共沉劑的絮凝沉降法,處理效率高,成本低,處理後廢水中懸浮物與Al 3含量均符合國家排放標准要求。技術特點:以共沉劑、PH調節劑與高分子絮凝劑配合使用,使廢水中氫氧化鋁膠體粒子凝聚沉降。葯劑用量少、沉降速度快、沉渣密實、過濾容易。技術轉讓。詳細資料備索。

SUP15306 高濃度難降解有機廢水處理技術和方法
主要內容有:1.採用樹脂或有關化學方法回收廢水中有用的原料-酚苯胺等2.對廢水首先採用熱控微電解法處理,COD去除一般可達60%。3.接著採用化學強氧化方法對廢水進一步處理,COD去除率一般可達70左右。4.再採用吸附法處理可使廢水COD進一步下降。5.最後對廢水採用二段系列化處理,達到排放要求。 技術轉讓。詳細資料備索。

SUP854 含高濃度有機物及氨焦化污水催化濕式氧化凈化技術
催化濕式氧化是國際上一種深度處理高濃度有機廢水的新技術。我院開發成功的該項技術,所處理的污水在260-280℃、6.0-9.0MPa條件下,通過裝有濕式氧化催化劑的反應器,使污水中所含有的有機物及氨等污染物氧化分解成無害物排放,對COD、NH2-N(氨氮)及Bap(苯並芘)的去除率分別為99.5%、99.9%及97.2%。該技術已通過小試鑒定。技術轉讓。詳細資料備索。

SUP15292 β-萘酚生產廢水的治理與資源化
開發成功採用ND-910樹脂固定床吸附法處理β-萘磺酸鈉母液的新工藝,並在1997年通過小試成果鑒定。採用固定床工藝連續運行60批試驗,取得了滿意的效果。高濃度脫附液可套入生產工藝中經水解,吹萘,中和等步驟回收β-萘磺酸鈉和萘,實現污染物的綜合利用。技術轉讓。詳細資料備索。

SUP15295 氯化苯生產過程中水洗廢水的治理與綜合利用
氯化苯生產過程中排放黃色水洗酸性廢水,其中鹽本含量約8-9,Fe3+濃度為0.2-0.4,苯濃度為500-1000mg/1,氯化苯100-200 mg/1,排放0.4噸廢水/噸產品。由於廢水酸性強,Fe3+和苯的含量高,至今國內尚無有效的處理方法,是氯化苯行業急待解決的一個難題。通過系統的不試研究,開發成功廢水022樹脂固定床除鐵新工藝並通過鑒定。技術轉讓。詳細資料備索。

SUP9729 活性碳纖維對含酚廢水的處理
活性碳維對水溶液中的苯酚具有優異的吸附能力,能使經處理後的高濃度含酚工業廢水中酚的含量降到0.1×1/1000000。特別是它對低濃度的含酚廢水同樣達到深度凈化處理的目的。達到國家規定的排放標准。本技術採用柱法吸附裝置,設備體積小,操作簡單,可再生,反復多次使用。特別適用於酚濃度低,廢水量大的工廠,以及廢水的深度凈化等方面。技術轉讓。詳細資料備索。

SUP12121 電-多相催化過程治理二硝基苯酚工業廢水
1996年通過鑒定,技術國際先進。本成果在已授權的電-多催化過程琢其反應器的基礎上,研製出高效的催化劑,安裝成電-多相催化反應器,廢水在常溫常壓下流經反應器,就能達到COD減少,色度降低的好結果。設備簡單,操作方便,治廢效率高,可處理廢水的種類多、范圍廣,運行費有低廉。技術轉讓。詳細資料備索。

SUP12122 催化濕式氧化治理難降解高濃度有機工業廢水新技術
1992年10月通過鑒定,技術國際先進。催化濕式氧化法是將污水通過一個裝有高效氧化性能催化劑的反應器,在一定的壓力的溫度及催化劑的作用下將污水中的有機物和其他含N、S等毒物氧化分解成CO2、H2O及N2等無害物排放。該雙活性組份催化劑比國外單貴金屬催化劑貴金屬含量低50%,處理水空速可提高一倍。 技術轉讓。詳細資料備索。

SUP6392 ASBR工藝污水處理技術
本工藝為生物化學工藝,適用於各種有機性廢水處理。原廢水先經酸化預處理,再入SBR生化反應池處理,即可達標排放或回用。排泥周期大於150天。原水COD1000~2000mg/l,處理水COD小於或等於100mg/l,其餘各項指標均優於GB8978-88一級排放標准,符合間接回用水標准。應用范圍:肉聯廠、食品廠、制葯廠、化工廠等廠的廢水處理。技術轉讓。詳細資料備索。

SUP6389 CASBR法處理季戊四醇生產廢水
本工藝用於處理化工、制葯、季戊四醇等難降解有機工業廢水。原污水先經催化酸化(CA),使季戊四醇等難生化降解的有機物解毒並低分子化,為後續序列間歇活性污泥池(SBR)提高可生化性良好的有機質。原污水COD1200mg/l,季戊四醇600mg/l,處理水COD≤120mg/l,季戊四醇不檢出,處理水回用率90%。技術轉讓。詳細資料備索。

SUP7204 嗜甲基細菌處理甲醇廢水
成果所選育的嗜甲基菌可直接用於處理甲醇廢水(一般含甲醇1,最高不超過5),耐受甲醇沖擊濃度,可達到10。該菌種不僅可處理甲醇廢水,而且還可以處理甲胺、甲醛、烏洛托品等甲基類化合物廢水。該菌種生長條件溫和-常溫和接近於中性;有極強的活性;在長期運轉工程中不會被雜菌污染;有極好的沉降能力(2mm,sv15)和在填料上有很強的附著性。技術轉讓。詳細資料備索。

SUP5521 電泳油漆有機廢水處理新方法
噴漆、電泳油漆等行業排放出一種高濃度有機廢水,該廢水特點是COD和色度高,為此本項目採取酸化---凝聚氣浮法處理獲得良好效果。對於含COD為2000-3000mg/l、色度為1000-15000倍的電泳漆廢水,採用該工藝處理,排放水中COD、色度、SS、PH、油均達到排放標准。技術轉讓。詳細資料備索。

SUP5534 含金屬高濃度有機廢水處理技術
本項目以生產酞菁染料工廠排放出的廢水為對象,其水質成份為COD4000-5000mg/l、Cu1700-3800mg/l,該廢水特點是含Cu和COD高,且酸性強,並且是有機絡合銅。本項目採取網捕凝聚和生物三相流化床組合工藝處理獲得良好效果,處理後排放水質中Cu、pH、SS達標,COD≤150mg/l以下。適用於含金屬的高濃度有機廢水處理場合。技術轉讓。詳細資料備索。

SUP1775 高濃度有機廢水處理技術
本技術適用於白酒(酒精)廠、澱粉廠、啤酒廠、檸檬酸廠等高濃度有機廢水的處理。采?quot;厭氧-好氧"處理工藝。技術優點:1) 厭氧設備的容積負荷高,可達15~20 kg COD/m3 .d以上;2) COD去除率高,可達99%以上;3) 建設及運轉費用低,是其他技術的60~70% ;4) 整個處理設施的佔地面積小、布置緊湊。

SUP540 高濃度有機廢水的開發性處理
建設規模為日處理20噸高濃有機廢水。建設內容為:(1)處理集約化養殖廢水生產綠色肥料;(2)處理澱粉廢水生產綠色飼料;(3)處理再生紙廠廢水生產綠色燃料。本項目根據生態學與經濟學原理,利用涪質分離技術,通過一定手段,對上述高濃有機廢水中的有益成分進行截留與吸聚,將固形物調制、生產成商品性的綠色飼料、綠色肥料及綠色燃料。 技術轉讓。詳細資料備索。

SUP4323 三重環流生物三相流化床處理硝苯及苯胺類廢水的研究
本項目是在構築物中實現氣、液、固三相完全流態化的廢水處理新工藝,其中氣相可以是空氣或O2,固相可以為固定化微生物的活性碳,砂粒和離子交換樹脂等。 選用的微生物是研究室內分離出來的優勢菌種,10小時的停留時間對硝基苯和苯胺的去除率分別達到95%和99%以上。技術轉讓。詳細資料備索。

SUP16970 有機廢水高效處理設備
該設備具有容積負荷高、生化反應速度快、有機物去除效率高、佔地面積小、能耗低、剩餘污泥量少、耐負荷沖擊能力強等特點,適用於化工、啤酒、屠宰、澱粉、皮革、賓館等廢水的處理。該法與普通活性污泥法相比,工程投資減少10%~15%,佔地面積減少50%~60%,運行費用減少15%,剩餘污泥減少50%~70%。提供廢水處理設備。技術轉讓。詳細資料備索。

SUP1303 糖精納生產廢水的綜合處理及銅回收技術
糖精納生產廢水主要成分為鄰氨基苯甲酸及鄰苯二甲酸(約40%)、鄰氨甲苯或間對位甲苯(約28%)及不溶性糖精等。主要污染物為難生物降解的有毒有機物,本物化生化組合工藝,通過適當的工藝選擇,利用廠家的廢棄資源,使Cu 由50-200mg/l降至1mg/l以下並予以回收,CODcr達標排放。技術轉讓。詳細資料備索。

SUP9880 催化氧化-工程菌法處理高濃度工業有機廢水
本技術適用於普通工業有機廢水和高濃度、高色度、高鹽度和高毒性的工業有機廢水的處理。包括:1、物化處理,主要是調整PH和用絮凝劑處理。2、生化處理,工程菌在使用中表現出對有機污染物降解的高效性和適應性。本技術適用於處理高濃度有機廢水,處理每公斤COD的運行費用為0.35-0.5元。技術轉讓。詳細資料備索。

SUP852 高濃度有機廢水處理技術
本技術特別適用於酒精廠、澱粉廠、味精廠、啤酒廠 、製糖廠等以農副產品為原料的高濃度有機廢水的處理,採用厭氧-好氧工藝。本技術以上處理單元採用裝置化設計,整個處理流程實行以各種處理單元為模塊的有機結合。全套處理系統具有處理效果穩定、運行管理簡單、處理設施的結構布局緊湊、佔地少,建設費用低等優點。技術轉讓。詳細資料備索。

SUP1263 DBL三相生物流化床
DBL三相生物流化床是高效的工業有機廢水好氧生物處理裝置。本裝置特製輕型流動生物載體,易於流化、比表面大。床內微生物濃度高;空氣布氣均勻,氧傳質效率高,氧飽和度大;三相接觸,氣液膜更新快,有利於高濃度有機物快速降解。DBL三相生物流化床消化吸收日本水處理工程新技術設計而成,是當代環境工程的新成果。技術轉讓。詳細資料備索。

SUP12237 絡合萃取法處理工業含酚廢水技術
絡合萃取法是依據協同萃取理論和逆絡合萃取理論而研製開發出的處理工業含酚廢水最為有效的方法。含酚萃取劑經過反萃取後可回收酚。且萃取劑復用性好,操作方便,處理費用低,脫色效果好。該技術主要適用於農葯、化工、醫葯、染料、塑料等行業產生的含有苯酚、硝基酚、苯甲酚等各種不同濃度含酚廢水處理及回收,具有高效性和一定的普適性。技術轉讓。詳細資料備索。

SUP11955 甲胺磷農葯生產廢水處理工藝技術
甲胺磷生產工業廢水,具有濃度高、鹽度高、有機磷含量高、氨態氮含量高,毒性大、生物溶解難等特點,該種廢水排放對環境污染極大。然而至今國內還未有對該種廢水有效治理的方法。我校研究開發?quot;負壓酸解溜"工藝能有效地降解有機磷,並有較高的脫鹽效率,而且能耗低、佔地少、運行費用低,無二次污染等特點。技術轉讓。資料備索。詳細資料備索。

SUP 540 高濃度有機廢水的開發性處理
建設內容為:(1)處理集約化養殖廢水生產綠色肥料;(2)處理澱粉廢水生產綠色飼料;(3)處理再生紙廠廢水生產綠色燃料。本項目利用涪質分離技術,通過一定手段,對上述高濃有機廢水中的有益成分進行截留與吸聚,將固形物調制、生產成商品性的綠色飼料、綠色肥料及綠色燃料。技術轉讓。詳細資料備索。

SUP 20980 超聲-紫外-氧化聯合技術處理有機廢水
超聲輻射水會引起許多復雜的物理變化和化學變化,這種現象成為超聲空化效應。紫外光具有消毒、殺菌作用,並能加速有機物的降解。反應中加入氧化劑可提高聲光聯合輻射的效率,降低成本。超聲-紫外-氧化聯合技術處理有機廢水,降解速度快、效果好、處理設備簡單、操作運行簡便、處理費用低,並具有殺菌、消毒、固液分離等作用。技術轉讓。詳細資料備索。

SUP 21000 高濃度有機廢水處理技術(CWO)
此方法能夠在無稀釋的情況下對氨氮化合物,COD,BOD,污泥等高濃度污濁成分實施一次性高效氧化處理,使之分解成無害的形式(N2,CO2,H2O)。不產生需要二次處理的污泥,而且能同時進行脫色,脫臭和滅菌,處理水還能夠再使用。處理後的排氣中也沒有NOx和SOx的產生。 技術轉讓。詳細資料備索。

SUP 22233 大孔吸附樹脂處理含磺胺廢水的研究
本課題研究 探討經濟實用的新工藝,以回收排放廢水中的SN和NaNO3。本研究是利用本單位研製的DRHⅢ型大孔吸附樹脂對含SN廢水進行有效的處理,利用樹脂的 吸附特性廢水中的SN得以濃縮而製成優等品級的工業磺胺產品,廢水中的無機鹽製成優等品級的硝酸鈉。技術轉讓。詳細資料備索。

SUP 22238 上流式厭氧污泥床(UASB)反應器綜合技術
成果簡介 ①應用范圍廣。可有效地凈化輕工、釀造、制葯、化工等行業排放的高濃度有機廢水。②負荷高、處理效果好。在已實施的工程中,厭氧反應器負荷可達到5~10kgCOD/m3·d,CO D去率可達85~90%。整體工藝COD去除率可達95%以上。③可回收清潔能源-沼氣,產氣率0.40~0.45m3沼氣/kgCOD(去除)。技術轉讓。詳細資料備索。

SUP 23252 高濃度氨氮和難降解有機物的新型微生物處理法
針對工業廢水中難降解的有機物、高分子聚合物、化學合成染料以及高濃度氨氮等處理難點,選育和馴化不同生長類型的高效降解菌群和脫氮、脫色、除油微生物,可應用於難處理的石油化工、印染、制葯和食品加工行業的廢水處理。技術轉讓。詳細資料備索。

SUP 23487 有機廢水處理中基本無剩餘污泥排放技術的研究
本研究採用兼氧技術,研究一群異養型微生物將菌體外的糖類物水解剝離以及通過生物化學反應打開菌體細胞壁的機理。破碎菌體釋放出的原生質進入有機廢水處理系統,被好氧微生物分解成小分子無機物,達到剩餘污泥減容化。技術轉讓。詳細資料備索。

SUP 23698 間歇式活性污泥法處理有機性工業廢水的試驗研究
通過模型和生產性試驗,確證了間歇式活性污泥法技術對以製革、毛皮加工為對象的高濃度有機為水處理的適用性。提出了間歇式活性污泥法處理製革和毛皮加工為水的各項主要的設計和運行控制參數。技術轉讓。詳細資料備索。

SUP 24039 微電解--生化法處理難解有機廢水技術
微(內)電解法是利用鐵-碳粒料在電解質溶液中腐蝕形成的微(內)電解過程來處理廢水的一種電化學技術。電極反應產生的新生態Fe2+是一種吸附、包容和絡合能力相當強的混凝劑,綜合效果顯著,脫色效果好,可提高廢水可生化性,與二級生化處理匹配性好,操作簡便,運行費用低;生化處理採用水解-好氧工藝。技術轉讓。詳細資料備索。

SUP 25438 高濃度有機廢水處理技術
以農產品或農副產品為原料生產澱粉、脂肪酸、味精、酒精、溶劑、檸檬酸和啤酒等,要排放大量的有機廢水,含有大量的碳水化合物、脂肪蛋白質、纖維素等有機物。我院在UASB反應器的布水系統及三相分離器設計上有獨特之處,對不同的處理對象,採用不同的厭氧處理單元。具有產氣率高,有機物去除率高的優點。技術轉讓。詳細資料備索。

SUP 27296 焦化廢水治理
現採用絮凝與膜分離技術首先對高濃度的COD進行初步治理,然後對分離後的清液採用液體上催化分解技術使廢水中的NH3-N轉化成氮氣等對水體無害的含氮物質。工藝簡單,放大的可靠性高。充分考慮了現有焦化廠廢水治理的工藝,因此容易工業化。技術轉讓。詳細資料備索。

SUP 28024 典型有機廢水處理的一體化成套設備與關鍵技術開發
該設備處理效率高、佔地小、能耗和運行費用低、管理方便、全自動或主體部件自動化操作應用了第三產業有機廢水、小區生活污水和制葯、造紙、紡織和印染等行業難降解毒性行機廢水的處理,通過技術攻關,最終形成年產值達到億元以上的產業化技術產品。技術轉讓。詳細資料備索。

SUP 28034 混凝處理與厭氧水解酸化-好氧生化結合處理高濃度有機廢水
本方法是利用混凝技術將高濃度的有機廢水在進行生化前去除大部分有害有毒物,從而大大降低生化處理負荷,然後採用不完全厭氧技術使廢水的可生化性得到改善,再進行好氧生化深度處理,使處理後的水質可滿足任何一級的環保排放要求。技術特點:工藝結構緊湊,投資省,節約電耗,運行效果穩定,易操作管理,基本上無生化污泥外排。 技術轉讓。詳細資料備索。

SUP 28035 混凝處理與ABF法生化工藝結合處理高濃度有機廢水
這類工藝主要是應用於特別高濃度污染物、有毒有害的化工類廢水,ABF工藝的耐沖擊負荷、運行穩定、無生化剩餘污泥。ABF法的工作原理主要是充分利用微生種群的特性,為其創造適宜的環境,使不同的生物群在不同的污染負荷下得到良好的繁殖,能更有效地去除污染物。技術轉讓。詳細資料備索。

SUP 28036 混凝處理加好氧生化技術處理中等濃度的有機廢水
在進行了混凝處理去除絕大部分懸浮物和膠體物後,使COD大大降低,直接採用生接觸氧化或活性污泥法使廢水處理達標。特點:投資省,佔地面積小,工藝簡介,運行可靠。技術轉讓。詳細資料備索。

SUP 28038 化學氧化、混凝處理重金屬鹽類廢水和一般性污染的有機廢水
用於處理電鍍廢水、漂洗廢水、低濃度生活廢水及其他低有機污染的輕化工廢水。技術轉讓。詳細資料備索。

SUP 28039 EGSB厭氧反應器處理高濃度有機廢水
用於處理澱粉廢水、酒精廢水和其他輕工食品等廢水。EGSB厭氧工藝是在UASB厭氧工藝的基礎上發展起來的新工藝,具有高負荷、高去除率(COD去除率大於85%)、抗沖擊負荷能力強、容積產氣率高、可設置完全自控等優點。技術轉讓。詳細資料備索。

SUP 28853 難降解有機工業廢水光催化氧化處理工藝設備
該工藝研究以五氯苯酚鈉、除草劑為處理對象,進行了光催化劑制備、裝飾,載體的篩選,負載方法的優化等研究;考察了催化劑活性的影響因素;試驗了光催化反應器。二氧化鈦粉末直接負載法所製得的催化劑具有較好的催化氧化活性。 技術轉讓。詳細資料備索。

SUP 30151 膜法和化學法聯合處理生物難降解廢水
技術轉讓。詳細資料備索。

SUP 30348 催化濕式氧化處理高濃度有機廢水研究
催化濕式氧化處理高濃度有機廢水,其技術原理為:在高溫、高壓條件下,氧氣成為一種氧化性能較強制氧化劑,利用氧氣與有機廢水充分接觸,氧化去除廢水中的有機污染物。採用適當的催化劑,可以加速這種氧化反應,達到更好的去除污染物質效果,還可以降低反應所需的溫度和壓力。技術轉讓。詳細資料備索。

SUP 30350 高濃度有機廢水膜生物處理技術
本技術的創新之處:(1)在厭氧膜生物反應器的中試研究中,厭氧生物池的容積負荷明顯高於國外研究應用水平。(2)在好氧浸沒式膜生物反應器開發中,創造性應用國產聚丙烯中空纖維膜替代進口聚乙烯膜,同時提出了膜操作和清洗方法,採用的厭氧酸化---好氧一體式膜生物工藝不僅可以進一步提高COD的去除率,還能改善膜的水通量。技術轉讓。詳細資料備索。

SUP 30355 含鹽(NaC1)有機廢水處理技術
食品腌制、奶製品加工、化工以及制葯等許多行業所排放的廢水中都含有較高濃度的NaC1。由於NaC1對微生物有抑製作用,使得用生物法處理這些行業的廢水不易達到滿意的效果。我校採用好氧生物處理工藝對這種廢水的處理進行了研究。本技術已經通過專家鑒定,成果在國內領先,在含鹽廢水處理領域具有廣闊的應用前景。 技術轉讓。詳細資料備索。

SUP 30627 催化氧化法處理高濃度、高色度有機廢水的成套工藝技術
該工藝技術和處理裝置的基本原理是:廢水經預處理除油除雜後,水中有機物在催化劑的作用下,被氧化劑氧化分解,有機物由大分子氧化成小分子,小分子進一步氧化成二氧化碳和水,使COD大幅度下降,出水基本無色,大大提高了生物的可降解性,與生化工藝配套性強,按不同地區和不同水質要求,可再配深度處理工藝達標排放。技術轉讓。詳細資料備索。

SUP 30896 ASBR法處理高濃度有機廢水
ASBR方法是在一個密閉的反應器中,在生物氣二氧化碳和甲烷的循環攪拌下進行厭氧反應,通過控制時間程序完成廢(污)水的處理。ASBR法不需氣體分離裝置,尤其是具有活性厭氧污泥濃度高、耐負荷沖擊的廢水有機物與微生物接觸充分降解污染物的速率大等優點。技術轉讓。詳細資料備索。

SUP 31385 膜生物反應器處理有機廢水--污水處理與回用新技術
膜生物法(Membreane Bioreactor)是將現代膜分離技術與傳統生物處理技術有機結合起來的一種新型水處理技術。它集生物降解、污泥分離於一體,它具有容積負荷高,佔地面積小、出水水質穩定且出水可直接達到回用要求等突出優點。應用范圍:(1) 生活污水,(2) 尤其小區生活污水的處理及回用;(3) 難降解/高濃度、小水量有機廢水的處理。 技術轉讓。詳細資料備索。

SUP 31393 生物強化共代謝法處理焦化廢水難降有機物
本項目是經過多年研究,獲得成果主要是利用篩選分離的高效優勢菌種,共代謝基質優化組合配方與合理的工藝流程,可使焦化廢水二級出水COD降至100mg/L以下,得到了較為滿意的研究結果與有關參數,為這類廢水深度處理提供了新技術、新方法。應用范圍:本研究成果可應用焦化廢水處理,焦化廢水二級出水深度處理。技術轉讓。詳細資料備索。

SUP 31402 TURB@有機廢水高效生物膜反應器
本反應器的特徵在於開發出了一種新型的生物載體以及與該載體相匹配的反應器。新型載體表面呈蜂窩狀,比重小且呈親水性。與現有的各種載體如石英砂、活性炭、陶粒以及丙烯酸等相比,具有易掛膜、能耗低、單位容積生物量高的特點。應用范圍: 各類有機廢水處理及生物脫氮除磷。技術轉讓。詳細資料備索。

SUP32258 微電解-生化法處理難降解有機廢水技術
生化處理採用水解-好氧工藝。特點是不僅可去除COD,具有脫色效果,而且可顯著提高後續好氧生物處理的效率和深度,同時因為不會產生惡臭氣體及沼氣,停留時間相對也較短,也不必控制絕對無氧條件,因此這是一種經濟有效,安全衛生,易於操作的生化處理工藝,再配合好氧曝氣處理來大幅度去除有機物,使出水達到排放標准。技術轉讓。詳細資料備索。

SUP33328 光催化降解法治理有機廢水
我校開發的光催化降解法的技術特點:1000mg/L的高濃度有機廢水,光降解催化劑作用下,可降到100 mg/L以下,COD值與透明度達到排放標准。該技術對印染廠排出的廢水、製糖廠廢水、發酵工業產生的廢水、

Ⅳ 想問一下污水處理站里的生化系統應該加哪些營養物比例是多少

生化指的是生物化學反應過程,在這個系統中包含厭氧、兼氧、好氧三個階段。
在污水的好氧處理中,對微生物來講,碳,氮,磷營養有一定的比例,一般為C:N:P=100:5:1。而在污水的厭氧處理中,對污水中N,P的含量要求低,有資料報導,只要達到COD:N:P=800:5:1即可,但一般來講,要求C/N比達到(10-20):1為宜。應為濃度比。我們一般投放麵粉、二胺(含N,P)
首先,如果是用葡萄糖來配置營養液,可以理解COD近似等於BOD,也就是說COD和BOD都可以表示為碳源,營養比應該表示為C:N:P=100:5:1.
在常規活性污泥系統中,若廢水中C為100(即BOD5為100),大體上3/4的C經異化作用後被徹底氧化為CO2,1/4(即25)的C經同化作用合成為微生物細胞。從菌體中元素比例得知,N為C的1/5,P又為N的1/5,故在合成菌體時,25份C同時需5份N,1份P。因此在去除100份C所需的營養配比為BOD5:N: P=100:5:1。
從化學式下手,葡萄糖C6H12O6(分子量180),尿素(NH2)2CO(分子量60),磷酸二氫鉀KH2PO4(分子量136),分子量C:12/N:14/P:31,按照C:N:P=100:5:1,C應取1200g,N應取70g,P應取31g,因要求COD為500mg/L時,C應取0.5g,則0.5:1200=1:2400,則可求出N實際應取0.029g,P應取0.013g.
而取用的是化合物,用分子量換算一下,則有實際取用尿素=60×0.029÷14=0.124g,實際取用磷酸二氫鉀=136×0.013÷31=0.057g,因實際取用尿素中含有C=0.124×12÷60=0.0496g,則最終取用葡萄糖=180×0.5÷12-0.0496=7.45g
應取葡萄糖7.45g;尿素0.124g;磷酸二氫鉀0.057g.

COD進水為170,出水假設為80,則需要去除90ppm,一天800方,則需要去除的COD為:800*90g=72000g=72kg
按COD:N:P=100:5:1可以計算出需要N為3.6kg,P為0.72kg。
然後再根據尿素和過磷酸氫二鉀的分子式和濃度來計算所需要的尿素量和過磷酸氫二鉀量。
可以網路我的名字咨詢哦。

Ⅳ 污水處理用雙氰胺會對生化危害嗎

如果在污水處理上如果使用這種試劑的話,當然會有生化的危險。但我們會控制住的論述了城市污水的分類狀況及其對生物的危害,通過對金魚在城市污水中的生存狀況的記錄分析,驗證了城市污水對生物的危害,最後,提出了合理的整治方案,並呼籲杭州市民應自覺地保護我們的環境,努力把杭州建成一個「藍天、碧水、綠色、清凈」的現代化都市。
關鍵詞:城市污水 生物 危害 治理方案

一. 引言
我國是水資源並不豐富的國家之一,河川徑流及地下水補給平均約為27000億立方米,人年均佔有量不足2000立方米,是俄羅斯的1/7,美國的1/5。而在大規模經濟建設、城市建設普遍加快的情況下,我們往往只顧局部、忽略整體,只顧眼前、不講長遠,只顧經濟效益、不注重環境效益,城市污水的大量排放以及落後的污水處理系統,造成水資源環境的惡性循環。因此我們應清醒地看到,城市水環境治理和水資源再生利用工程的建設刻不容緩。
(一)城市污水的界定
城市污水是指通過各種排污管道收集的所有排水,包括生活污水、工業污水、合流制污水以及城市融雪和雨水,總之是一種混合污水。

1. 生活污水
生活污水是人們日常生活中產生的各種污水的總稱,其中包括廚房、浴室等排出的污水和廁所排出的含糞便污水等。除家庭生活污水外,還有各種集體單位和公用事業等排出的污水。
未經處理的生活污水排入天然水體會造成水體污染。隨著人口的快速增長和城市化進程的加快,城市生活污水的排放量劇增,1997年與1990相比,城市生活污水排放量整整翻了一番,達到了219億噸,所以生活污水對水體的影響亦隨之增加。
2. 工業污水
由於工業的迅速發展,工業廢水的排放量很大。工業廢水的特點是量大,成分復雜,難處理,不易降解和凈化,危害性較大。總的說來具有以下特點:①懸浮物含量高,可達100-30000 mg/l;②生化需氧量(BOD)高,可達200-5000 mg/l;③酸、鹼度變化大,pH低至2,高至13;④溫度高,可高達40℃,造成熱污染;⑤易燃,因常含低沸點的揮發性液體,如汽油等易燃污染物易著火成水面火災;⑥多種多樣有毒有害成分如油、農葯等。 (二)水污染的類型
1.病原物污染
主要來自城市生活污水、醫院污水、垃圾及地面徑流等方面。病原微生物的特點是:①數量大;②分布廣;③存活時間較長;④繁殖速度快;⑤易產生抗性,很難消滅;⑥傳統的二級生化污水處理及加氯消毒後,某些病原微生物、病毒仍能大量存活;此類污染物實際上通過多種途徑進入人體,並在體內生存,引起人體疾病。
2.需氧有機物污染
有機物的共同特點是這些物質直接進入水體後,通過微生物的生物化學作用而分解為簡單的無機物質二氧化碳和水,在分解過程中需要消耗水中的溶解氧,在缺氧條件下污染物就發生腐敗分解、惡化水質,常稱這些有機物為需氧有機物。水體中需氧有機物越多,耗氧也越多,水質也越差,說明水體污染越嚴重。

3.富營養化污染
是一種氮、磷等植物營養物質含量過多所引起的水質污染現象。水生生態系統的富營養化能通過化學污染物由兩種途徑發生:一種是通過正常情況下限定植物的無機營養物質的量的增加;另一種是通過作為分解者的有機物的增加。

4.惡臭
惡臭是一種普遍的污染危害,它也發生於污染水體中。人能嗅到的惡臭多達4000多種,危害大的有幾十種。惡臭的危害表現為:①妨礙正常呼吸功能,使消化功能減退;精神煩躁不安,工作效率降低,判斷力、記憶力降低;長期在惡臭環境中工作和生活會造成嗅覺障礙,損傷中樞神經、大腦皮層的興奮和調節功能;②某些水產品染上了惡臭無法食用、出售;③惡臭水體不能作游泳、養魚、飲用,而破壞了水的用途和價值;④還能產生硫化氫、甲醛等毒性危害。

Ⅵ 求工業污水中氮磷鉀的具體測定方法,謝謝

總磷的測定 鉬酸銨分光光度法
用過硫酸鉀(或硝酸-高氯酸)為氧化劑,將未經過濾的水樣消解,用鉬酸銨分光光度測定總磷的方法。
總磷包括溶解的、顆粒的、有機的和無機磷。
本標准適用於地面水、污水和工業廢水。
取25mL試料,本標準的最低檢出濃度為0.01mg/L,測定上限為0.6mg/L。
在酸性條件下,砷、鉻、硫干擾測定。
2 原理
在中性條件下用過硫酸鉀(或硝酸-高氯酸)使試樣消解,將所含磷全部氧化為正磷酸鹽。在酸性介質中,正磷酸鹽與鉬酸銨反應,在銻鹽存在下生成磷鉬雜多酸後,立即被抗壞血酸還原,生成藍色的絡合物。
3 試劑
本標准所用試劑除另有說明外,均應使用符合國家標准或專業標準的分析試劑和蒸餾水或同等純度的水。
3.1 硫酸(H2SO4),密度為1.84g/mL。
3.2 硝酸(HNO3),密度為1.4g/mL。
3.3 高氯酸(HClO4),優級純,密度為1.68g/mL。
3.4 硫酸(H2SO4),1:1。
3.5 硫酸,約c(1/2H2SO4)=1mo1/L:將27mL硫酸(3.1)加入到973mL水中。
3.6 氫氧化鈉(NaOH),1mo1/L溶液:將40g氫氧化鈉溶於水並稀釋至1000mL。
3.7 氫氧化鈉(NaOH),6mo1/L溶液;將240g氫氧化鈉溶於水並稀釋至1000mL。
3.8 過硫酸鉀,50g/L溶液:將5g過硫酸鉀(K2S2O8)溶解干水,並稀釋至100mL。
3.9 抗壞血酸,100g/L溶液:溶解10g抗壞血酸(C6H8O6)於水中,並稀釋至100mL。
此溶液貯於棕色的試劑瓶中,在冷處可穩定幾周。如不變色可長時間使用。
3.10 鉬酸鹽溶液:溶解13g鉬酸銨[(NH4)6Mo7O24·4H2O]於100mL水中。溶解0.35g酒石酸銻鉀[KSbC4H4O7· 1 H2O]於100mL水中。在不斷攪拌下把鉬酸銨溶液徐徐加到300mL硫酸(3.4)中,加酒石酸銻鉀溶液並且混合均勻。
此溶液貯存於棕色試劑瓶中,在冷處可保存二個月。
3.11 濁度-色度補償液:混合兩個體積硫酸(3.4)和一個體積抗壞血酸溶液(3.9)。使用當天配製。
3.12 磷標准貯備溶液:稱取0.2197±0.001g於110℃乾燥2h在乾燥器中放冷的磷酸二氫鉀(KH2PO4),用水溶解後轉移至1000mL容量瓶中,加入大約800mL水、加5mL硫酸(3.4)用水稀釋至標線並混勻。1.00mL此標准溶液含50.0μg磷。
本溶液在玻璃瓶中可貯存至少六個月。
3.13 磷標准使用溶液:將10.0mL的磷標准溶液(3.12)轉移至250mL容量瓶中,用水稀釋至標線並混勻。1.00mL此標准溶液含2.0μg磷。
使用當天配製。
3.14 酚酞,10g/L溶液:0.5g酚酞溶於50mL95%乙醇中。
4 儀器
實驗室常用儀器設備和下列儀器。
4.1 醫用手提式蒸汽消毒器或一般壓力鍋(1.1~1.4kg/cm2)。
4.2 50mL具塞(磨口)刻度管。
4.3 分光光度計。
註:所有玻璃器皿均應用稀鹽酸或稀硝酸浸泡。
5 采樣和樣品
5.1 採取500mL水樣後加入1mL硫酸(3.1)調節樣品的pH值,使之低於或等於1,或不加任何試劑於冷處保存。
註:含磷量較少的水樣,不要用塑料瓶采樣,因易磷酸鹽吸附在塑料瓶壁上。
5.2 試樣的制備:
取25mL樣品(5.1)於具塞刻度管中(4.2)。取時應仔細搖勻,以得到溶解部分和懸浮部分均具有代表性的試樣。如樣品中含磷濃度較高,試樣體積可以減少。
6 分析步驟
6.1 空白試樣
按(6.2)的規定進行空白試驗,用水代替試樣,並加入與測定時相同體積的試劑。
6.2 測定
6.2.1 消解
6.2.1.1 過硫酸鉀消解:向(5.2)試樣中加4mL過硫酸鉀(3.8),將具塞刻度管的蓋塞緊後,用一小塊布和線將玻璃塞扎緊(或用其他方法固定),放在大燒杯中置於高壓蒸汽消毒器(4.1)中加熱,待壓力達1.1kg/cm2,相應溫度為120℃時、保持30min後停止加熱。待壓力表讀數降至零後,取出放冷。然後用水稀釋至標線。
註:如用硫酸保存水樣。當用過硫酸鉀消解時,需先將試樣調至中性。
6.2.1.2 硝酸-高氯酸消解:取25mL試樣(5.1)於錐形瓶中,加數粒玻璃珠,加2mL硝酸(3.2)在電熱板上加熱濃縮至10mL。冷後加5mL硝酸(3.2),再加熱濃縮至10mL,放冷。加3mL高氯酸(3.3),加熱至高氯酸冒白煙,此時可在錐形瓶上加小漏斗或調節電熱板溫度,使消解液在錐形瓶內壁保持迴流狀態,直至剩下3~4mL,放冷。
加水10mL,加1滴酚酞指示劑(3.14)。滴加氫氧化鈉溶液(3.6或3.7)至剛呈微紅色,再滴加硫酸溶液(3.5)使微紅剛好退去,充分混勻。移至具塞刻度管中(4.2),用水稀釋至標線。
註:①用硝酸-高氯酸消解需要在通風櫥中進行。高氯酸和有機物的混合物經加熱易發
生危險,需將試樣先用硝酸消解,然後再加入硝酸-高氯酸進行消解。
②絕不可把消解的試作蒸干。
③如消解後有殘渣時,用濾紙過濾於具塞刻度管中,並用水充分清洗錐形瓶及濾
紙,一並移到具塞刻度管中。
④水樣中的有機物用過硫酸鉀氧化不能完全破壞時,可用此法消解。
6.2.2 發色
分別向各份消解液中加入1mL抗壞血酸溶液(3.9)混勻,30s後加2mL鉬酸鹽溶液(3.10)充分混勻。
註:①如試樣中含有濁度或色度時,需配製一個空白試樣(消解後用水稀釋至標線)然
後向試料中加入3mL濁度-色度補償液(3.11),但不加抗壞血酸溶液和鉬酸鹽溶液。然
後從試料的吸光度中扣除空白試料的吸光度。
②砷大於2mg/L干擾測定,用硫代硫酸鈉去除。硫化物大於2mg/L干擾測定,
通氮氣去除。鉻大於50mg/L干擾測定,用亞硫酸鈉去除。
6.2.3 分光光度測量
室溫下放置15min後,使用光程為30mm比色皿,在700nm波長下,以水做參比,測定吸光度。扣除空白試驗的吸光度後,從工作曲線(6.2.4)上查得磷的含量。
註:如顯色時室溫低於13℃,可在20~30℃水花上顯色15min即可。
6.2.4 工作曲線的繪制
取7支具塞刻度管(4.2)分別加入0.0,0.50,1.00,3.00,5.00,10.0,15.0mL磷酸鹽標准溶液(3.14)。加水至25mL。然後按測定步驟(6.2)進行處理。以水做參比,測定吸光度。扣除空白試驗的吸光度後,和對應的磷的含量繪制工作曲線。
7 結果的表示
總磷含量以C(mg/L)表示,按下式計算:C=m/v

式中:m——試樣測得含磷量,μg;
V——測定用試樣體積,mL。
8 精密度與准確度
8.1 十三個實驗室測定(採用6.2.1.1消解)含磷2.06mg/L的統一樣品。
8.1.1 重復性
實驗室內相對標准偏差為0.75%。
8.1.2 再現性
實驗室間相對標准偏差為1.5%。
8.1.3 准確度
相對誤差為+1.9%。
8.2 六個實驗室測定(採用6.2.1.2消解)含磷量2.06mg/L的統一樣品。
8.2.1 重復性
實驗室內相對標准偏差為1.4%。
8.2.2 再現性
實驗室間相對標准偏差為1.4%。
8.2.3 准確度
相對誤差為1.9%。
質控樣品主要成分是乙氨酸(NH2CH2COOH)和甘油磷酸鈉。

Ⅶ 污水處理後的總氮過高怎麼辦

第一、折點加氯氧化法,通過加入次氯酸鈉或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。其反應方程式如下所示:

2NH2Cl + HClO →N2↑+3H++3Cl- +H2O

第二、利用微生物硝化和反硝化去除廢水中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞硝酸鹽和硝酸鹽,然後再進行反硝化,將硝酸鹽轉化為氮氣。其反應原理結構式如下所示:

2NH3+3O2→HNO2+H2O+能量(亞硝化作用)

2HNO2+O2→ 2HNO3+能量(硝化作用)

HNO3+CH3OH→N2 + CO2+H2O+能量(反硝化作用)

註:總氮,簡稱為TN,水中的總氮含量是衡量水質的重要指標之一。總氮的定義是水中各種形態無機和有機氮的總量。包括NO3-、NO2-和NH4+等無機氮和蛋白質、氨基酸和有機胺等有機氮,以每升水含氮毫克數計算。常被用來表示水體受營養物質污染的程度。

(7)污水nh2n是什麼意思擴展閱讀

水中的總氮含量是衡量水質的重要指標之一。其測定有助於評價水體被污染和自凈狀況。地表水中氮、磷物質超標時,微生物大量繁殖,浮游生物生長旺盛,出現富營養化狀態。

水質總氮的測定方法主要有:

1、鹼性過硫酸鉀紫外分光光度法(HJ 636-2012)[2]:現如今,水質監測的主要方法,如英國RAIKING,中國銳泉等品牌是主流的在這個標准基礎上優化的在線監測產品。

2、氣相分子吸收光譜法:該方法主要應用於實驗室。

3、也有採用氨氮、硝酸根、亞硝酸根分別進行測量,然後將結果累加值作為總氮的測量結果。典型應用如德國WTW。

4、在環境地表水、水質監測領域,鹼性過硫酸鉀紫外分光光度法以及優化方法是當前的主要方法。

Ⅷ 氨氮超標對人體的危害

水質氨氮超標對人體直接造成的影響不是很大,但是對環境影響挺大的,會導致水質富營養化。

Ⅸ 環境微生物學創新題 氮磷污水的生物處理

污水生物脫氮除磷的基本原理
1.生物脫氮
廢水中存在著有機氮、NH3-N、NxO--N等形式的氮,而其中以NH3-N和有機氮為主要形式。生物脫氮是在微生物的作用下,將有機氮和NH3-N轉化為N2和NxO氣體的過程。進行生物脫氮可分為氨化-硝化-反硝化三個步驟。由於氨化反應速度很快,在一般廢水處理設施中均能完成,故生物脫氮的關鍵在於硝化和反硝化。
1.1. 氨化作用
氨化作用是指將有機氮化合物轉化為NH3-N的過程,也稱為礦化作用。參與氨化作用的細菌稱為氨化細菌。
在好氧條件下,主要有兩種降解方式,一是氧化酶催化下的氧化脫氨。 另一是某些好氧菌,在水解酶的催化作用下能水解脫氮反應
在厭氧或缺氧的條件下,厭氧微生物和兼性厭氧微生物對有機氮化合物進行還原脫氨、水解脫氨和脫水脫氨三種途徑的氨化反應。
RCH(NH2)COOH→RCH2COOH+NH1
CH3CH(NH2)COOH→CH3CH(OH)COOH+NH3
CH2(OH)CH(NH2)COOH→CH3COCOOH+NH3
1.2. 硝化作用
硝化作用是指將NH3-N氧化為NxO--N的生物化學反應,這個過程由亞硝酸菌和硝酸菌共同完成,包括亞硝化反應和硝化反應兩個步驟。
亞硝酸菌和硝酸菌統稱為硝化菌。發生硝化反應時細菌分別從氧化NH3-N和N2O--N的過程中獲得能量,碳源來自無機碳化合物,如CO2-3、HCO-、CO2等。 硝化過程的三個重要特徵:
⑴NH3的生物氧化需要大量的氧,大約每去除1g的NH3-N需要4.2gO2; ⑵硝化過程細胞產率非常低,難以維持較高物質濃度,特別是在低溫的冬季; ⑶硝化過程中產生大量的質子(H+),為了使反應能順利進行,需要大量的鹼中和,理論上大約為每氧化需要鹼度5.57g(以NaCO3計)。

Ⅹ 工業廢水去除氨氮的方法

根據廢水中氨氮濃度的不同,可將廢水分為3類:高濃度氨氮廢水(NH3-N>500mg/l),中等濃度氨氮廢水(NH3-N:50-500mg/l),低濃度氨氮廢水(NH3-N<50mg/l)。然而高濃度的氨氮廢水對微生物的活性有抑製作用,制約了生化法對其的處理應用和效果,同時會降低生化系統對有機污染物的降解效率,從而導致處理出水難以達到要求。
故本工程的關鍵之一在於氨氮的去除,去除氨氮的主要方法有:物理法、化學法、生物法。物理法含反滲透、蒸餾、土壤灌溉等處理技術;化學法含離子交換、氨吹脫、折點加氯、焚燒、化學沉澱、催化裂解、電滲析、電化學等處理技術;生物法含藻類養殖、生物硝化、固定化生物技術等處理技術。目前比較實用的方法有:折點加氯法、選擇性離子交換法、氨吹脫法、生物法以及化學沉澱法。
1. 折點氯化法去除氨氮
折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮廢水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。
折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。1mg殘留氯大約需要0.9~1.0mg的二氧化硫。在反氯化時會產生氫離子,但由此引起的pH值下降一般可以忽略,因此去除1mg殘留氯只消耗2mg左右(以CaCO3計)。折點氯化法除氨機理如下:
Cl2+H2O→HOCl+H++Cl-
NH4++HOCl→NH2Cl+H++H2O
NHCl2+H2O→NOH+2H++2Cl-
NHCl2+NaOH→N2+HOCl+H++Cl-
折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時使廢水達到消毒的目的。對於氨氮濃度低(小於50mg/L)的廢水來說,用這種方法較為經濟。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,常將此法與生物硝化連用,先硝化再除微量殘留氨氮。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。
2. 選擇性離子交換化去除氨氮
離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用,它是一類硅質的陽離子交換劑,成本低,對NH4+有很強的選擇性。
O.Lahav等用沸石作為離子交換材料,將沸石作為一種把氨氮從廢水中分離出來的分離器以及硝化細菌的載體。該工藝在一個簡單的反應器中分吸附階段和生物再生階段兩個階段進行。在吸附階段,沸石柱作為典型的離子交換柱;而在生物再生階段,附在沸石上的細菌把脫附的氨氮氧化成硝態氮。研究結果表明,該工藝具有較高的氨氮去除率和穩定性,能成功地去除原水和二級出水中的氨氮。
沸石離子交換與pH的選擇有很大關系,pH在4~8的范圍是沸石離子交換的最佳區域。當pH<4時,H+與NH4+發生競爭;當pH>8時,NH4+變為NH3而失去離子交換性能。用離子交換法處理含氨氮10~20mg/L的城市污水,出水濃度可達1mg/L以下。離子交換法具有工藝簡單、投資省去除率高的特點,適用於中低濃度的氨氮廢水(<500mg/L),對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。但再生液為高濃度氨氮廢水,仍需進一步處理。
3. 空氣吹脫法與汽提法去除氨氮
空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣相的方法。該方法適宜用於高濃度氨氮廢水的處理。吹脫是使水作為不連續相與空氣接觸,利用水中組分的實際濃度與平衡濃度之間的差異,使氨氮轉移至氣相而去除廢水中的氨氮通常以銨離子(NH4+)和游離氨(NH3)的狀態保持平衡而存在。將廢水pH值調節至鹼性時,離子態銨轉化為分子態氨,然後通入空氣將氨吹脫出。吹脫法除氨氮,去除率可達60%~95%,工藝流程簡單,處理效果穩定,吹脫出的氨氣用鹽酸吸收生成氯化銨可回用於純鹼生產作母液,也可根據市場需求,用水吸收生產氨水或用硫酸吸收生產硫酸銨副產品,未收尾氣返回吹脫塔中。但水溫低時吹脫效率低,不適合在寒冷的冬季使用。
用該法處理氨氮時,需考慮排放的游離氨總量應符合氨的大氣排放標准,以免造成二次污染。低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣污染。
汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,處理機理與吹脫法一樣是一個傳質過程,即在高pH值時,使廢水與氣體密切接觸,從而降低廢水中氨濃度的過程。傳質過程的推動力是氣體中氨的分壓與廢水中氨的濃度相當的平衡分壓之間的差。延長氣水間的接觸時間及接觸緊密程度可提高氨氮的處理效率,用填料塔可以滿足此要求。塔的填料或充填物可以通過增加浸潤表面積和在整個塔內形成小水滴或生成薄膜來增加氣水間的接觸時間汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與吹脫法類似,對氨氮的去除率可達97%以上。但汽提塔內容易生成水垢,使操作無法正常進行。
吹脫和汽提法處理廢水後所逸出的氨氣可進行回收:用硫酸吸收作為肥料使用;冷凝為1%的氨溶液。
4. 生物法去除氨氮
生物法去除氨氮是在指廢水中的氨氮在各種微生物的作用下,通過硝化和反硝化等一系列反應,最終形成氮氣,從而達到去除氨氮的目的。生物法脫氮的工藝有很多種,但是機理基本相同。都需要經過硝化和反硝化兩個階段。
硝化反應是在好氧條件下通過好氧硝化菌的作用將廢水中的氨氮氧化為亞硝酸鹽或硝酸鹽,包括兩個基本反應步驟:由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應。由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應。亞硝酸菌和硝酸菌都是自養菌,它們利用廢水中的碳源,通過與NH3-N的氧化還原反應獲得能量。反應方程式如下:
亞硝化: 2NH4++3O2→2NO2-+2H2O+4H+
硝化 : 2NO2-+O2→2NO3-
硝化菌的適宜pH值為8.0~8.4,最佳溫度為35℃,溫度對硝化菌的影響很大,溫度下降10℃,硝化速度下降一半;DO濃度:2~3mg/L;BOD5負荷:0.06-0.1kgBOD5/(kgMLSS•d);泥齡在3~5天以上。
在缺氧條件下,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從廢水中逸出由於兼性脫氮菌(反硝化菌)的作用,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程,稱為反硝化。反硝化過程中的電子供體是各種各樣的有機底物(碳源)。以甲醇為碳源為例,其反應式為:
6NO3-+2CH3OH→6NO2-+2CO2+4H2O
6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-
反硝化菌的適宜pH值為6.5~8.0;最佳溫度為30℃,當溫度低於10℃時,反硝化速度明顯下降,而當溫度低至3℃時,反硝化作用將停止;DO濃度<0.5mg/L;BOD5/TN>3~5。生物脫氮法可去除多種含氮化合物,總氮去除率可達70%~95%,二次污染小且比較經濟,因此在國內外運用最多。其缺點是佔地面積大,低溫時效率低。
常見的生物脫氮流程可以分為3類:
⑴多級污泥系統
多級污泥系統通常被稱為傳統的生物脫氮流程。此流程可以得到相當好的BOD5去除效果和脫氮效果,其缺點是流程長,構築物多,基建費用高,需要外加碳源,運行費用高,出水中殘留一定量甲醇;
⑵單級污泥系統
單級污泥系統的形式包括前置反硝化系統、後置反硝化系統及交替工作系統。前置反硝化的生物脫氮流程,通常稱為A/O流程。與傳統的生物脫氮工藝流程相比,該工藝特點:流程簡單、構築物少,只有一個污泥迴流系統和混合液迴流系統,基建費用可大大節省;將脫氮池設置在去碳源,降低運行費用;好氧池在缺氧池後,可使反硝化殘留的有機污染物得到進一步去除,提高出水水質;缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。此外,後置式反硝化系統,因為混合液缺乏有機物,一般還需要人工投加碳源,但脫氮的效果高於前置式,理論上可接近100%的脫氮效果。交替工作的生物脫氮流程主要由兩個串聯池子組成,通過改換進水和出水的方向,兩個池子交替在缺氧和好氧的條件下運行。它本質上仍是A/O系統,但利用交替工作的方式,避免了混合液的迴流,其脫氮效果優於一般A/O流程。其缺點是運行管理費用較高,必須配置計算機控制自動操作系統;
⑶生物膜系統
將上述A/O系統中的缺氧池和好氧池改為固定生物膜反應器,即形成生物膜脫氮系統。此系統中應有混合液迴流,但不需污泥迴流,在缺氧的好氧反應器中保存了適應於反硝化和好氧氧化及硝化反應的兩個污泥系統。
由於常規生物處理高濃度氨氮廢水還存在以下:
為了能使微生物正常生長,必須增加迴流比來稀釋原廢水;
硝化過程不僅需要大量氧氣,而且反硝化需要大量的碳源,一般認為COD/TKN至少為9。
5. 化學沉澱法去除氨氮
化學沉澱法是根據廢水中污染物的性質,必要時投加某種化工原料,在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。
化學沉澱法處理NH3-N是始於20世紀60年代,在90年代興起的一種新的處理方法,其主要原理就是NH4+、Mg2+、PO43-在鹼性水溶液中生成沉澱。
在氨氮廢水中投加化學沉澱劑Mg(OH)2、H3PO4與NH4+反應生成MgNH4PO4•6H2O(鳥糞石)沉澱,該沉澱物經造粒等過程後,可開發作為復合肥使用。整個反應的pH值的適宜范圍為9~11。pH值<9時,溶液中PO43-濃度很低,不利於MgNH4PO4•6H2O沉澱生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反應將在強鹼性溶液中生成比MgNH4PO4•6H2O更難溶於水的Mg3(PO4)2的沉澱。同時,溶液中的NH4+將揮發成游離氨,不利於廢水中氨氮的去除。利用化學沉澱法,可使廢水中氨氮作為肥料得以回收。

閱讀全文

與污水nh2n是什麼意思相關的資料

熱點內容
馬桶水垢可以用硫酸嗎 瀏覽:307
小凈化器怎麼用 瀏覽:994
污水管網直徑選用圖 瀏覽:425
鍋底上的水垢怎麼清除 瀏覽:669
柳工裝載機855n空調濾芯在哪裡 瀏覽:47
機械除油過濾器 瀏覽:462
污水基槽回填方怎麼算 瀏覽:231
京普太陽能除垢 瀏覽:557
餐桌檯面上的樹脂 瀏覽:4
江門制漆UV樹脂 瀏覽:198
污水中允許最大鹽分濃度 瀏覽:987
志高空氣凈化器後蓋怎麼開 瀏覽:383
山西水處理葯劑生產廠家 瀏覽:821
創維凈水器怎麼排污水 瀏覽:899
凈水器場合怎麼分類 瀏覽:313
折光率純水的校正值怎麼算 瀏覽:475
反滲透管道怎麼消毒 瀏覽:614
污水磷指標很低怎麼辦 瀏覽:117
江津有多少污水處理廠 瀏覽:901
新科凈水機濾芯1個多少錢 瀏覽:990