Ⅰ 廢水指標要求0排放,如果0.06算不算0排放昵
廢水零排放是來指工業水經源過重復使用後,將這部分含鹽量和污染物高濃縮成廢水全部(99%以上)回收再利用,無任何廢液排出工廠。水中的鹽類和污染物經過濃縮結晶以固體形式排出廠送垃圾處理廠填埋或將其回收作為有用的化工原料。
所謂零排放,是指無限地減少污染物和能源排放直至到零的活動。零排放,就其內容而言,一是要控制生產過程中不得已產生的能源和資源排放,將其減少到零;另一含義是將那些不得已排放出的能源、資源充分利用,最終消滅不可再生資源和能源的存在。
零排放的指標還全都是0,不超過標准就是零排放,0.06在標准內就算,超過就不算。
ps:本人就是做污水處理工程設計的,cod,bod,氨氮等這些污染物,實際上數值是不可能為0的。
Ⅱ 重金屬廢水怎麼處理
使用重金屬捕集劑用更快捷高效的方法去除重金屬廢水中的重金屬物質,例回如鎳、答銅等物質
|材料:重金屬捕集劑 RS100、次氯酸鈉
設計思路:
水樣二:PH值為11.4,直接投加重捕劑 RS100為100ppm和300ppm進行對比試驗,檢測銅、鎳、鐵、銀含量
水樣三:先調鹼至ph=9.5,去除大量的離子態重金屬,取上清液100ml再加 重捕劑 RS100,待沉澱後取上清液檢測銅、鎳、鐵、銀含量
指導方案:原水調PH後加次氯酸鈉破氰處理,沉澱30min
破氰沉澱後出水,加入100ppm 重捕劑 RS100,攪拌反應10min以上
加入100ppmPAC,快速攪拌混勻
加入5ppmPAM,攪拌混勻後沉澱30min
出水加鹽酸(硫酸)回調PH至6-9
達標排放(Ni<0.5ppm;Cu<0,5ppm)(根據實際狀況加入重金屬捕集劑)對本水樣中的重金屬,重金屬捕集劑 RS100在鹼性條件下的去除率更高,建議在破氰沉澱後直接投加 弱水無極 重捕劑 RS100,二級沉澱出水再回調PH
◆建議:沉澱效果對出水水質影響較大,建議適當延長沉澱時間以減小出水中懸浮物影響
Ⅲ 燃煤電廠脫硫廢水在煙道中的蒸發及流動特性數值模擬
利用燃煤電廠尾部煙道的煙氣余熱來實現脫硫廢水的噴霧蒸發是實現其零排放的有效途徑,以國內某燃煤電廠330MW火力機組的煙道為研究對象,利用DPM模型對霧化液滴群在高溫煙道內的蒸發及流動特性進行了研究,考察了不同霧化嘴角情況下液滴碰壁情況、不同負荷下液滴的蒸發情況,研究結果表明:在50%、75%、100%煙氣負荷工況下,煙氣溫度越高、煙氣速度越快,霧化液滴群完全蒸發所需時間越少,液滴最大蒸發時間在2.85~3.36s之間。在單煙道結構的最佳噴嘴霧化錐角為65°情況下,越靠近煙道內側,渦的尺寸越大,越有利於促進噴嘴區的局部液滴群不斷向其他區域擴散。
中國是以煤炭為主要能源的國家,2017年燃煤火力發電量佔全年總發電量的67%。發電過程中煤炭燃燒產生的二氧化硫排放問題尤為引人關注,在一定的氣象條件下產生復雜的化學反應,是形成霧霾和酸雨的重要前驅體。石灰石-石膏濕法煙氣脫硫工藝應用最廣,然而,循環漿液將持續富集來自煙氣及脫硫劑中的重金屬元素和氯離子,從而產生高濃度的脫硫廢水,廢水直接排放對環境產生負面影響。
如採用常規工藝進行廢水零排放處理,則高濃度氯離子的腐蝕性對設備材質要求很高,造價昂貴。使用噴嘴將脫硫廢水霧化為液滴群並噴入空氣預熱器至電除塵器間的煙道內,利用高溫煙氣與常溫廢水的傳熱作用實現脫硫廢水的零排放,有投資少、工藝流程短、去除重金屬離子、建設工期短、維護成本低等特點,被推薦為實現脫硫廢水零排放的可行性技術。針對脫硫廢水液滴群在煙氣中蒸發與流動特性的優化是實現脫硫廢水煙道蒸發零排放的關鍵。
目前,國內外對於脫硫廢水煙道蒸發工藝的研究主要集中在以數值模擬的方式研究脫硫廢水蒸發特性、流動特性兩方面,同時,伴以一定的工程或實驗數據作為參照。張子敬等研究認為噴霧液滴群蒸發特性受到液滴加熱升溫(傳熱過程)和噴霧液滴群在煙氣中的擴散(傳質過程)兩方面的共同作用。Strotos G等建立了單個液滴在高溫燃氣中蒸發、運動過程的數學模型,獲得了不同燃氣溫度和速度下液滴的蒸發規律。
冉景煜等對不同物性液滴在低溫煙氣環境中的運動,以及受熱和蒸發過程中的傳熱傳質特性進行了理論分析。李明波等通過計算流體動力學軟體Fluent,對空氣預熱器出口至電除塵器入口段煙道內的煙氣流動情況進行了模擬。
Laín等的以拉格朗日湍流顆粒分散體模型的建立為基礎,提出攜帶稀薄粒子的氣流在一定條件下,假設粒子為球體,只考慮曳力和重力作用。Young等應用離散多組分(DMC)燃料液滴模型對多組分燃料噴霧的蒸發進行了數值模擬。Pinto等研究了雙流體噴嘴的噴霧乾燥,成功地預測了干舉碧燥時間和最終含水量隨著初始液滴直徑變化的趨勢。
晉銀佳等等提出深度過濾脫硫廢水預處理工藝,將脫硫廢水在霧化蒸發前進行固液深度分離預處理以解決硫廢水中懸浮顆粒物堵塞問題。
國內外學者已對液滴蒸發的機理進行了深入研究,重點考察煙氣溫度、速度、液滴直徑坦源、液滴速度對蒸發的影響,但是,不同霧化嘴角對脫硫廢水蒸發的影響尚未有明確的解釋,文中結合國內某燃煤電廠330MW機組空氣預熱器至電除塵器間的煙道中噴霧蒸發實現脫硫廢水零排放工程實踐,數值模擬不同煙氣負荷和不同噴霧錐角對脫硫廢水噴霧蒸發流動特性的影響。
1 方法與模型
脫讓答態硫廢水在煙道中噴霧蒸發屬於典型的氣液兩相流流動,在數值模擬中以空氣為連續相,以噴霧液滴為離散相,主要考慮連續相和離散相之間的相間運動和相互作用。首先,建立煙道的物理模型,根據連續相和離散相方程,以確定的邊界條件進行相應數值模擬計算。
1. 1 物理模型
圖1所示為空氣預熱器與電除塵器之間煙道和尺寸的物理模型。煙道分為入口段、下彎頭、豎直段煙道、上彎頭、異型彎頭和水平煙道6個部分。採用ANSA軟體對煙道幾何模型進行網格劃分,該煙道模型結構簡單,流場結構均勻,在計算速度上採用有明顯優勢的全六面體網格,生成總網格數為200萬。
經檢驗,該模型網格EquiSize Skew值在0~0.4之間的網格數佔98.09%,網格劃分質量較高。採用網格數分別為200萬和300萬和400萬的網格進行無關化驗證,對豎直段煙道內的6個點進行速度監測,3種網格計算結果相差不大,為了節省計算資源,選擇網格數量約為200萬的網格進行模擬,如圖2所示。
1. 2 數學模型
1. 2. 1 連續相方程
在氣液兩相流動中,盡管控制方程獨立,兩相卻是相互耦合的。液滴作為質量源、動量源和能量源被引入到氣相方程中,並通過這些源項影響氣相流場,氣相流場又反過來通過其速度場、溫度場、壓力場等來影響液滴的本身狀態。下列方程為氣相控制方程,其表達式分別如下。
連續性方程:
2 結果與分析
2. 1 煙氣負荷對液滴群蒸發及運動過程的影響
脫硫廢水在鍋爐尾部煙道中的霧化及流動、蒸發過程可分為初始階段和穩態階段。初始階段,常溫液滴群作為吸熱蒸發的分布熱匯,充分吸收煙氣流的余熱,所吸收的熱量大部分用於液滴群溫度的升高,同時,在煙氣速度的影響下,該階段的液滴群速度不斷增大;在很短時間內,霧化液滴群即達到穩態階段,此時,液滴群被煙氣加熱到穩定值,吸收的所有熱量都用於液滴群蒸發,液滴群速度與來流煙氣速度一致。
液滴群的蒸發效果主要由以下參數共同決定:氣相溫度、傳輸特性、液相溫度、運動速度以及氣液兩相的傳熱、傳遞效率,分別選取330MW機組50%、75%、100%煙氣負荷工況下,3種不同煙溫( 120.3、125.1、128.9℃)及煙速( 9.19、11.56、14.64m/s)的氣相條件對脫硫廢水蒸發及流動特性的影響作定量分析,並結合傳熱傳質理論加以解釋。
圖3顯示了50%、75%、100%3種不同煙氣負荷下,以不同的霧化錐角進行噴霧,運動液滴最大蒸發時間T的模擬結果, T值隨煙氣負荷的增加呈現近乎相同的線性下降趨勢。隨著負荷的增加煙氣量增加,煙道煙氣溫度降低減少,蒸發時間減少,其中,50%、75%及100%煙氣負荷工況運動液滴最大蒸發時間T分別在3.07~3.36s、2.85~3.04s和2.57~2.80s范圍內。
選取噴嘴霧化錐角65°配置下的各煙氣負荷顆粒運動軌跡,如圖4所示。
液滴群顆粒皆能蒸發完全,100%煙氣負荷對應的最大蒸發時間最短,50% 煙氣負荷對應的最大蒸發時間最長,由此可見,對於相同粒徑的液滴,氣體環境溫度越高、煙氣速度越快,液滴群的汽化速率越高、蒸發效果越好。
其中,由於100%負荷下煙氣速度相較於75%和50% 負荷時更快,則脫硫廢水顆粒衰減後的速度仍然較快,若煙道長度不足,仍有蒸發不完全的可能性,從圖中可看出,煙氣速度的變化對液滴最大完全蒸發時間的影響較小,故在單煙道結構中,煙氣溫度對蒸發效果起主導作用。
若煙氣溫度升高,則氣液兩相的溫差增大,氣體環境向液滴群的傳熱增強,從而使液滴表面蒸發及傳質擴散速率不斷增大,因此,液滴溫度持續升高,其到達臨界蒸發溫度所需時間變短,液滴自噴入煙道至完全蒸發的停留時間隨煙氣溫度升高而逐漸減少。
2. 2 霧化錐角對液滴群蒸發及運動過程的影響
為定量分析霧化錐角對霧化液滴群流動特性的影響,定義被煙道壁面捕捉的液滴數量占液滴顆粒總數比為A0。A0值可反映出脫硫廢水噴霧蒸發結晶後,在煙道內壁積灰的可能性大小。
圖5顯示了在20°、35°、50°、65°、80°、95°6種不同霧化錐角下在單煙道壁面被捕捉的液滴數量分數的模擬結果,A0值隨霧化錐角的變化呈現近乎相同的先平穩下降、後明顯上升趨勢。
圖5表明:在霧化錐角由20°至50°增加的過程中,A0值變化相對平穩,由於霧化角過小,液滴蒸發速度較慢,易撞擊頂部水平煙道;當霧化錐角增加至65°,煙道捕捉的液滴數達到最小值,說明65°霧化錐角在煙道內壁積灰可能性最小;霧化錐角由65°至95°繼續增大的過程中,A0值呈明顯增加趨勢,此時,由於霧化角過大液滴易撞擊豎直煙道,但霧化錐角大於90°後,增加速率有所放緩,且有下降趨勢,隨著霧化角的增大,液滴蒸發速度變快,液滴碰壁的可能性變小。
當噴嘴霧化錐角過小時,相同工況下液滴蒸發較慢。當液滴進入水平煙道時,由於液滴的直徑相對較大,隨流能力也就越弱,液滴越撞擊水平煙道形成積灰。當噴嘴霧化錐角過大時,液滴容易直接撞擊豎直煙道形成積灰。因此,存在1個最佳的霧化錐角使液滴的碰壁數量最小,經過驗證當霧化錐角為65°時撞擊煙道的液滴數量最小。
單煙道結構75%煙氣負荷工況下,最佳霧化錐角65°時,對於脫硫廢水蒸發及流動特性的定量及煙道截面速度矢量圖,如圖6所示。
由圖6可知,在噴霧蒸發的初始階段,傳質擴散及蒸發速率較快,噴霧對煙氣的剪切卷吸形成了一個較大的不規則的渦。
由於煙道內側的煙氣體積流量較大,噴嘴截面沿煙氣流動方向1m處煙氣以較快的速度沖入對牆,造成其上部有較大壓強差而形成迴流,故越靠近煙道內側,渦的形態越大,有利於促進噴嘴區的局部液滴群不斷向其他區域擴散。隨著蒸發及傳質擴散的進一步均勻化,噴霧蒸發進入穩態階段,煙道通流截面渦增大,截面渦的形態逐漸規則化,速度矢量場趨於穩定。
3 結 論
1 ) 50%、75%、100%3種煙氣負荷工況下,在單煙道壁面被捕捉的液滴數量分數隨霧化錐角的增加皆呈現先平穩下降、後明顯上升趨勢。
2)在20°、35°、50°、65°、80°、95°6種不同霧化錐角下運動液滴最大蒸發時間值隨煙氣負荷的增加呈現近乎相同的線性下降趨勢。在最佳噴嘴霧化錐角65°配置下,對於相同粒徑的液滴,氣體環境溫度越高、煙氣速度越快,液滴群的汽化速率越高、蒸發效果越好。其中,煙氣速度的變化對液滴最大完全蒸發時間的影響較小,煙氣溫度對蒸發效果起主導作用。脫硫廢水噴霧後形成的液滴群可在煙道中完全蒸發。
3 )最佳霧化錐角配置下的速度矢量圖顯示,越靠近煙道內側,渦的尺寸越大,有利於促進噴嘴區的局部液滴群不斷向其他區域擴散;噴霧蒸發初始階段的傳質擴散及蒸發速率較快,速度矢量圖呈現出一個較大的不規則的渦形態;噴霧蒸發穩態階段煙道通流截面渦增大、形態逐漸規則化,速度矢量場趨於穩定。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
Ⅳ 化工廢水重金屬是不是一定要預處理再進處理站
含重金屬廢水處理:為使污水中所含的重金屬達到排水某一水體或再次使用的水質要求,對其進行凈化的過程。
目前,重金屬廢水處理的方法大致可以分為三大類:(1)化學法;(2)物理處理法;(3)生物處理法。
化學法
化學法主要包括化學沉澱法和電解法,主要適用於含較高濃度重金屬離子廢水的處理,化學法是目前國內外處理含重金屬廢水的主要方法。
2.1.1化學沉澱法
化學沉澱法的原理是通過化學反應使廢水中呈溶解狀態的重金屬轉變為不溶於水的重金屬化合物,通過過濾和分離使沉澱物從水溶液中去除,包括中和沉澱法、硫化物沉澱法、鐵氧體共沉澱法。由於受沉澱劑和環境條件的影響,沉澱法往往出水濃度達不到要求,需作進一步處理,產生的沉澱物必須很好地處理與處置,否則會造成二次污染。
2.1.2電解法
電解法是利用金屬的電化學性質,金屬離子在電解時能夠從相對高濃度的溶液中分離出來,然後加以利用。電解法主要用於電鍍廢水的處理,這種方法的缺點是水中的重金屬離子濃度不能降的很低。所以,電解法不適於處理較低濃度的含重金屬離子的廢水。
2.1.3螯合法[1]
螯合法又稱高分子離子捕集劑法,是指在廢水處理過程中通過投加適量的重金屬捕集劑,利用捕集劑與金屬離子鉛、鎘結合時形成相應的螯合物的原理實現鉛、鎘的去除分離。該反應能在常溫和較大pH范圍(3?11)下發生,同時捕集劑不受共存重金屬離子的影響。因此該方法去除率高,絮凝效果佳,污泥量少且整合物易脫水。
2.1.4納米重金屬水處理技術
納米材料因其比表面積遠超普通材料,故同一種物質將會顯示出不同的物化特型,很多新型的納米材料都不斷地在水處理行業中實驗、實踐。被環保部、科技部、工信部、財政部四部委聯合審批立項為「2011年國家重大科技成果轉化項目」———納米水處理工藝及系列產品,在江西銅業股份有限公司應用取得了歷史性的突破,填補了國內空白。
國內通常採用的重金屬廢水處理方法,包括石灰中和法和硫化法等。這些傳統的處理工藝,雖然可以將廢水中的重金屬去除掉,但是處理效果並不穩定,處理後回收的清水水質仍難以確保穩定達標排放,而且還會產生二次污染。納米重金屬水處理技術不僅能使處理後的出水水質優於國家規定的排放標准且穩定可靠,投資成本和運行成本較低,與水中重金屬離子反應快,吸附、處理容量是普通材料的10倍到1000倍,而且使沉澱的污泥量較傳統工藝降低50%以上,污泥中雜質也少,有利於後續處理和資源回收。有數據顯示,同樣是每日處理300立方米重金屬污水量,傳統工藝每天要產生25噸石灰渣污泥,而採用納米技術後每月只產生25噸納米金屬泥。尤其值得關注的是,這種污泥中的重金屬單位含量提高了30倍。若以銅冶煉廠的廢水處理為例,其回收的納米銅泥品位已達到20%,完全可以作為銅礦資源再生利用。
物理處理法
物理處理法主要包含溶劑萃取分離、離子交換法、膜分離技術及吸附法。
2.2.1溶劑萃取分離
溶劑萃取法是分離和凈化物質常用的方法。由於液液接觸,可連續操作,分離效果較好。使用這種方法時,要選擇有較高選擇性的萃取劑,廢水中重金屬一般以陽離子或陰離子形式存在,例如在酸性條件下,與萃取劑發生絡合反應,從水相被萃取到有機相,然後在鹼性條件下被反萃取到水相,使溶劑再生以循環利用。這就要求在萃取操作時注意選擇水相酸度。盡管萃取法有較大優越性,然而溶劑在萃取過程中的流失和再生過程中能源消耗大,使這種方法存在一定局限性,應用受到很大的限制。
2.2.2離子交換法
離子交換法是重金屬離子與離子交換劑進行交換,達到去除廢水中重金屬離子的方法。常用的離子交換劑有陽離子交換樹脂、陰離子交換樹脂、螯合樹脂等。幾年來,國內外學者就離子交換劑的研製開發展開了大量的研究工作。隨著離子交換劑的不斷涌現,在電鍍廢水深度處理、高價金屬鹽類的回收等方面,離子交換法越來越展現出其優勢。離子交換法是一種重要的電鍍廢水治理方法,處理容量大,出水水質好,可回收重金屬資源,對環境無二次污染,但離子交換劑易氧化失效,再生頻繁,操作費用高。
2.2.3膜分離技術
膜分離技術是利用一種特殊的半透膜,在外界壓力的作用下,不改變溶液中化學形態的基礎上,將溶劑和溶質進行分離或濃縮的方法,包括電滲析和隔膜電解。電滲析是在直流電場作用下,利用陰陽離子交換膜對溶液陰陽離子選擇透過性使水溶液中重金屬離子與水分離的一種物理化學過程。隔膜電解是以膜隔開電解裝置的陽極和陰極而進行電解的方法,實際上是把電滲析與電解組合起來的一種方法。上述方法在運行中都遇到了電極極化、結垢和腐蝕等問題。
2.2.4吸附法
吸附法是利用多孔性固態物質吸附去除水中重金屬離子的一種有效方法。吸附法的關鍵技術是吸附劑的選擇,傳統吸附劑是活性炭。還有黏土類吸附劑粉、煤灰吸附劑、生物質基材料和[1] 樹脂基吸附材料。活性炭有很強吸附能力,去除率高,但活性炭再生效率低,處理水質很難達到回用要求,價格貴,應用受到限制。近年來,逐漸開發出有吸附能力的多種吸附材料。有相關研究表明,殼聚糖及其衍生物是重金屬離子的良好吸附劑,殼聚糖樹脂交聯後,可重復使用10次,吸附容量沒有明顯降低。利用改性的海泡石治理重金屬廢水對Pb2+、Hg2+、Cd2+ 有很好的吸附能力,處理後廢水中重金屬含量顯著低於污水綜合排放標准。另有文獻報道蒙脫石也是一種性能良好的粘土礦物吸附劑,鋁鋯柱撐蒙脫石在酸性條件下對Cr 6+的去除率達到99%,出水中Cr 6+含量低於國家排放標准,具有實際應用前景。
生物處理法
生物處理法是藉助微生物或植物的絮凝、吸收、積累、富集等作用去除廢水中重金屬的方法,包括生物吸附、生物絮凝、植物修復等方法。
2.3.1生物吸附
生物吸附法是指生物體藉助化學作用吸附金屬離子的方法。藻類和微生物菌體對重金屬有很好的吸附作用,並且具有成本低、選擇性好、吸附量大、濃度適用范圍廣等優點,是一種比較經濟的吸附劑。用生物吸附法從廢水中去除重金屬的研究,美國等國家已初見成效。有研究者預處理假單胞菌的菌膠團後,將其固定在細粒磁鐵礦上來吸附工業廢水中Cu,發現當濃度高至100 mg/L時,除去率可達96%,用酸解吸,可以回收95%銅,預處理可以增加吸附容量。但生物吸附法也存在一些不足,例如吸附容量易受環境因素的影響,微生物對重金屬的吸附具有選擇性,而重金屬廢水常含有多種有害重金屬,影響微生物的作用,應用上受限制等,所以還需再進行進一步研究。
2.3.2生物絮凝
生物絮凝法是利用微生物或微生物產生的代謝物進行絮凝沉澱的一種除污方法。生物絮凝法的開發雖然不到20年,卻已經發現有17種以上的微生物具有較好的絮凝功能,如黴菌、細菌、放線菌和酵母菌等,並且大多數微生物可以用來處理重金屬。生物絮凝法具有安全無毒、絮凝效率高、絮凝物易於分離等優點,具有廣闊的發展前景。
2.3.3植物修復法
植物修復法是指利用高等植物通過吸收、沉澱、富集等作用降低已有污染的土壤或地表水的重金屬含量, 以達到治理污染、修復環境的目的。植物修復法是利用生態工程治理環境的一種有效方法,它是生物技術處理企業廢水的一種延伸。利用植物處理重金屬,主要有三部分組成:
(1)利用金屬積累植物或超積累植物從廢水中吸取、沉澱
或富集有毒金屬: (2)利用金屬積累植物或超積累植物降
低有毒金屬活性,從而可減少重金屬被淋濾到地下或通過
空氣載體擴散: (3)利用金屬積累植物或超積累植物將土
壤中或水中的重金屬萃取出來,富集並輸送到植物根部可收割部分和植物地上枝條部分。通過收獲或移去已積累和富集了重金屬植物的枝條,降低土壤或水體中的重金屬濃度。在植物修復技術中能利用的植物有藻類植物、草本植物、木本植物等。
藻類凈化重金屬廢水的能力主要表現在對重金屬具有很強的吸附力。褐藻對Au的吸收量達400mg/g,在一定條件下綠藻對Cu、Pb、La、Cd、Hg等重金屬離子的去除率達80%~90%。浩雲濤等分離篩選獲得了一株高重金屬抗性的橢圓小球藻(Chlorella ellipsoidea),並研究了不同濃度的重金屬銅、鋅、鎳、鎘對該藻生長的影響及其對重金屬離子的吸收富集作用。結果顯示,該藻Zn 和Cd 具有很高的耐受性。對四種重金屬的耐受能力依次為鋅>鎘>鎳>銅。該藻對重金屬具有很好的去除效果,15μmol/L Cu2+、300μmol/L Zn2+、100μmol/L Ni2+、30μmol/L Cd2+濃度72h處理,去除率分別達到40.93%、98.33%、97.62%、86.88%。由此可見,此藻類可應用於含重金屬廢水的處理。
草本植物凈化重金屬廢水的應用已有很多報道。風眼
蓮(Eichhoria crassipes Somis)是國際上公認和常用的一種治理污染的水生漂浮植物,它具有生長迅速,既能耐低溫、又能耐高溫的特點,能迅速、大量地富集廢水中Cd、Pb、Hg、Ni、Ag、Co、Cr等多種重金屬。張志傑等的研究結果表明,乾重lkg的風眼蓮在7~l0d可吸收鉛3.797g、鎘3.225g。周風帆等的 研究發現風眼蓮對鈷和鋅的吸收率分別高達97%和80%。香蒲(Typhao rientaliS Pres1)也是一種凈化重金屬的優良草本植物,它具有特殊的結構與功能,如葉片成肉質、柵欄組織發達等。香蒲植物長期生長在高濃度重金屬廢水中形成特殊結構以抵抗惡劣環境並能自我調節某些生理活動, 以適應污染毒害。招文銳等研究了寬葉香蒲人工濕地系統處理廣東韶關凡口鉛鋅礦選礦廢水的穩定性。歷時10年的監測結果表明,該系統能有效地凈化鉛鋅礦廢水。未處理的廢水含有高濃度的有害金屬鉛、鋅、鎘經人工濕地後,出水口水質明顯改善,其中鉛、鋅、鎘的凈化率分別達99.0%,97.%和94.9%,且都在國家工業污水的排放標准之下。此外,還有很多草本植物具有凈化作用,如喜蓮子草、水龍、刺苦草、浮萍、印度芥菜等。
採用木本植物來處理污染水體,具有凈化效果好,處理量大,受氣候影響小,不易造成二次污染等優點,越來越受到人們的重視。胡煥斌等試驗結果表明,蘆葦和池杉兩種植物對重金屬鉛和鎘都有較強富集能力,而木本植物池杉比草本植物蘆葦具有更好的凈化效果。周青等研究了5種常綠樹木對鎘污染脅迫的反應,實驗結果表明,在高濃度鎘脅迫下,5種樹木葉片的葉綠素含量、細胞質膜透性、過氧化氫酶活性及鎘富集量等生理生化特性均產生明顯變化,其中,黃楊、海桐,杉木抗鎘污染能力優於香樟和冬青。以木本植物為主體的重金屬廢水處理技術,能切斷有毒有害物質進入人體和家畜的食物鏈,避免了二次污染,可以定向栽培,在治污的同時,還可以美化環境,獲得一定的經濟效益,是一種理想的環境修復方法。
Ⅳ 如何處理工業污水
工業污水處理方法x0dx0a重金屬廢水x0dx0a重金屬廢水主要來自礦山、冶煉、電解、電鍍、農葯、醫葯、油漆、顏料等企業排出的廢水。x0dx0a重金屬廢水處理原則是:首先,最根本的是改革生產工藝.不用或少用毒性大的重金屬;其次是採用合理的工藝流程、科學的管理和操作,減少重金屬用量和隨廢水流失量,盡量減少外排廢水量。x0dx0a對重金屬廢水的處理,通常可分為兩類;一是使廢水中呈溶解狀態的重金屬轉變成不溶的金屬化合物或元素,經沉澱和上浮從廢水中去除.可應用方法如中和沉澱法、硫化物沉澱法、上浮分離法、電解沉澱(或上浮)法、隔膜電解法等;二是將廢水中的重金屬在不改變其化學形態的條件下進行濃縮和分離,可應用方法有反滲透法、電滲析法、蒸發法和離子交換法等。這些方法應根據廢水水質、水量等情況單獨或組合使用。含氰廢水x0dx0a含氰廢水主要來自電鍍、煤氣、焦化、冶金、金屬加工、化纖、塑料、農葯、化工等部門。含氰廢水是一種毒性較大的工業廢水,在水中不穩定,較易於分解,無機氰和有機氰化物皆為劇毒性物質,人食入可引起急性中毒。氰化物對人體致死量為0.18,氰化鉀為0.12g,水體中氰化物對魚致死的質量濃度為0.04一0.1mg/L。x0dx0a含氰廢水治理措施主要有:x0dx0a1、改革工藝,減少或消除外排含氰廢水,如採用無氰電鍍法可消除電鍍車間工業廢水。x0dx0a2、含氰量高的廢水,應採用回收利用,含氰量低的廢水應凈化處理方可排放。x0dx0a回收方法有酸化曝氣—鹼液吸收法、蒸汽解吸法等。x0dx0a治理方法有鹼性氯化法、電解氧化法、加壓水解法、生物化學法、生物鐵法、硫酸亞鐵法、空氣吹脫法等。其中鹼性氯化法應用較廣,硫酸亞鐵法處理不徹底亦不穩定,空氣吹脫法既污染大氣,出水又達不到排放標准.較少採用。x0dx0a食品工業廢水x0dx0a食品工業原料廣泛,製品種類繁多,排出廢水的水量、水質差異很大。廢水中主要污染物有:1、漂浮在廢水中固體物質,如菜葉、果皮、碎肉、禽羽等;2、懸浮在廢水中的物質有油脂、蛋白質、澱粉、膠體物質等;3、溶解在廢水中的酸、鹼、鹽、糖類等:4、原料夾帶的泥砂及其他有機物等;5、致病菌毒等。x0dx0a食品工業廢水的特點是有機物質和懸浮物含量高,易腐敗,一般無大的毒性。其危害主要是使水體富營養化,以致引起水生動物和魚類死亡,促使水底沉積的有機物產生臭味,惡化水質,污染環境。x0dx0a食品工業廢水處理除按水質特點進行適當預處理外,一般均宜採用生物處理。如對出水水質要求很高或因廢水中有機物含量很高,可採用兩級曝氣池或兩級生物濾池,或多級生物轉盤.或聯合使用兩種生物處理裝置,也可採用厭氧—需氧串聯的生物處理系統。x0dx0a造紙工業廢水x0dx0a造紙廢水主要來自造紙工業生產中的制漿和抄紙兩個生產過程。制漿產生的廢水,污染最為嚴重。洗漿時排出廢水呈黑褐色,稱為黑水,黑水中污染物濃度很高,BOD高達5—40g/L,含有大量纖維、無機鹽和色素。漂白工序排出的廢水也含有大量的酸鹼物質。x0dx0a抄紙機排出的廢水,稱為白水,其中含有大量纖維和在生產過程中添加的填料和膠料。x0dx0a造紙工業廢水的處理應著重於提高循環用水率,減少用水量和廢水排放量,同時也應積極探索各種可靠、經濟和能夠充分利用廢水中有用資源的處理方法。例如浮選法可回收白水中纖維性固體物質,回收率可達95%,澄清水可回用;燃燒法可回收黑水中氫氧化鈉、硫化鈉、硫酸鈉以及同有機物結合的其他鈉鹽。中和法調節廢水pH值;混凝沉澱或浮選法可去除廢水中懸浮固體;化學沉澱法可脫色;生物處理法可去除BOD,對牛皮紙廢水較有效;濕式氧化法處理亞硫酸紙漿廢水較為成功。此外,國內外也有採用反滲透、超過濾、電滲析等處理方法。x0dx0a印染工業廢水x0dx0a印染工業用水量大,通常每印染加工1噸紡織品耗水100一200噸,其中80%一90%以印染廢水排出。常用的治理方法有回收利用和無害化處理。x0dx0a一、回收利用x0dx0a1、廢水可按水質特點分別回收利用,如漂白煮煉廢水和染色印花廢水的分流,前者可以對流洗滌.一水多用,減少排放量;x0dx0a2、鹼液回收利用,通常採用蒸發法回收,如鹼液量大,可用三效蒸發回收,鹼液量小,可用薄膜蒸發回收;x0dx0a3、染料回收.如士林染料可酸化成為隱巴酸,呈膠體微粒.懸浮於殘液中,經沉澱過濾後回收利用。x0dx0a二、無害化處理x0dx0a1、物理處理法有沉澱法和吸附法等。沉澱法主要去除廢水中懸浮物;吸附法主要是去除廢水中溶解的污染物和脫色。x0dx0a2、化學處理法有中和法、混凝法和氧化法等。中和法在於調節廢水中的酸鹼度,還可降低廢水的色度;混凝法在於去除廢水中分散染料和膠體物質;氧化法在於氧化廢水中還原性物質,使硫化染料和還原染料沉澱下來。x0dx0a3、生物處理法有活性污泥、生物轉盤、生物轉筒和生物接觸氧化法等。x0dx0a為了提高出水水質,達到排放標准或回收要求.往往需要採用幾種方法聯合處理。x0dx0a化學工業廢水工業廢水x0dx0a化學工業廢水主要來自石油化學工業、煤炭化學工業、酸鹼工業、化肥工業、塑料工業、制葯工業、染料工業、橡膠工業等排出的生產廢水。化工廢水污染防治的主要措施是:x0dx0a一級處理主要分離水中的懸浮固體物、膠體物、浮油或重油等。可採用水質水量調節、自然沉澱、上浮和隔油等方法。x0dx0a二級處理主要是去除可用生物降解的有機溶解物和部分膠體物,減少廢水中的生化需氧量和部分化學需氧量,通常採用生物法處理。經生物處理後的廢水中,還殘存相當數量的COD,有時有較高的色、嗅、味,或因環境衛生標准要求高,則需採用三級處理方法進一步凈化。x0dx0a三級處理主要是去除廢水中難以生物降解的有機污染物和溶解性無機污染物。常用的方法有活性炭吸附法和臭氧氧化法,也可採用離子交換和膜分離技術等。各種化學工業廢水可根據不同的水質、水量和處理後外排水質的要求,選用不同的處理方法。x0dx0a酸鹼廢水x0dx0a酸性廢水主要來自鋼鐵廠、化工廠、染料廠、電鍍廠和礦山等,其中含有各種有害物質或重金屬鹽類。鹼性廢水主要來自印染廠、皮革廠、造紙廠、煉油廠等。酸鹼廢水中,除含有酸鹼外,常含有酸式鹽、鹼式鹽以及其他無機物和有機物。酸鹼廢水具有較強的腐蝕性,需經適當治理方可外排x0dx0a治理酸鹼廢水一股原則是:x0dx0a1、高濃度酸鹼廢水,應優先考慮回收利用,根據水質、水量和不同工藝要求,進行廠區或地區性調度,盡量重復使用:如重復使用有困難,或濃度偏低,水量較大,可採用濃縮的方法回收酸鹼。x0dx0a2、低濃度的酸鹼廢水,如酸洗槽的清洗水,鹼洗槽的漂洗水,應進行中和處理。 對於中和處理,應首先考慮以廢治廢的原則。如酸、鹼廢水相互中和或利用廢鹼(渣)中和酸性廢水,利用廢酸中和鹼性廢水。在沒有這些條件時,可採用中和劑處理。x0dx0a選礦廢水x0dx0a選礦廢水具有水量大,懸浮物含量高,含有害物質種類較多的特點。其有害物質是重金屬離子和選礦葯劑。選礦廢水主要通過尾礦壩可有效地去除廢水中懸浮物,重金屬和浮選葯劑含量也可降低。如達不到排放要求時,應作進一步處理,常用的處理方法有:x0dx0a1、去除重金屬可採用石灰中和法和焙燒白雲石吸附法;x0dx0a2、主除浮選葯劑可採用礦石吸附法、活性炭吸附法;x0dx0a3、含氰廢水可採用化學氧化法。x0dx0a冶金廢水x0dx0a冶金廢水的主要特點是水量大、種類多、水質復雜多變。按廢水來源和特點分類,主要有冷卻水、酸洗廢水、洗滌廢水(除塵、煤氣或煙氣)、沖渣廢水、煉焦廢水以及由生產中凝結、分離或溢出的廢水等。
Ⅵ 論重金屬工業污水的處理
一 重金屬工業污水傳統葯劑處理的特性
重金屬工業污水的重要污染物為重金屬,在實際處理過程中需要對重金屬進行析出和脫離。由於重金屬不易被自熱生物降解,在重金屬工業污水處理中,多採用將目的物生成不溶於水的狀態後加以處理的方法。這也就是傳統的改質處理技術。在重金屬工業污水改質中,需要採用石油成分或石油分解物等葯劑作為改質的原料,使得重金屬與之反應,得以固化析出。在處理過程中,改質劑的母體具有強烈的疏水性,在與親水性基團進行結合時很容易成為水溶性分子,從而使得重金屬類和改質劑生成固態化合物。因此,重金屬工業污水處理的效果在很大程度上取決於對改質劑的合理選擇。
二 重金屬工業污水處理的工藝流程
在重金屬工業污水傳統葯劑處理中,改質劑對污水中的重金屬進行捕收、脫除後還可以進行回收處理。在經過相應的再生裝置再生後,仍可以返回使用。這就使得污水處理的成本大大降低,更有利於資源的節約和充分利用。因此,重金屬工業污水處理的工藝流程可以表示為:
(1)改質工序?原水從貯水槽導入攪拌槽,對水溶液中的重金屬按克分子比1:0.1~3添肆唯寬加相當的改質劑。此時,改質劑立即捕收重金屬類。水溶液的PH值按規定值調整,然後泵送至泡沫塔。(2)泡沫處理工序?從泡沫塔底部壓人空氣,將捕收了重金屬的改質劑以泡沫方式脫除回收。(3)再生工序?通過PH調整等簡單的處理後,使改質劑再生,然後反覆使用。
三 重金屬工業污水處理的新技術
隨著科學技術的發展,重金屬工業污水處理技術也得到了較大的提升,在不斷深化研究過程中,涌現出來新的處理技術,新的葯劑被應用於重金屬工業污水處理中顯現出良好的效果。
(1)新型改質劑對重金屬工業污水的處理
就重金屬工業污水處理新技術的優勢來看,其所使用改質劑的性能特點主要表現在:能溶於水;捕收重金屬後產生強起抱力;捕裂亮收重金屬後仍能溶解於水中;吹人空氣後,捕收了重金屬的改質劑,靠其起飽力形成抱沫,並與混存的懸濁物也共同連續地脫除回收,回收率在90~100%之間;對從弱酸性到強鹼性的廢水都可廣泛使用;對污水中溶存的有機物懸濁物不必預先處理;處理時間短,10~20分鍾;能選擇地捕收不同重金屬等諸多方面。用泡沫處理裝置對重金屬工業污水進行處理的效率相對較高,並能實現改質劑能再生反覆使用的目標。
(2)電化學方法和納米光催化氧化對重金屬污水的處理
在重金屬工業污水處理過程中,電化學方法和納米光催化氧化技術的應用是通過具有導電性和光敏性的廉價特殊的電極材料,將電化學方法和納米光催化氧化進行有機結合,實現對中重金屬工業污水進行有效處理的方法,主要針對有機物高濃度、高毒性、高色度和難生化的重金屬污水處理。在對重金屬進行脫離的同時,電化學方法和納米光催化氧化相結合的方法能夠除去工業廢水中的有機毒物,更具有脫色的作用,從而達到對工業污水多種物質進行處理的效果。
四 重金屬工業污水處理其他方法分析
以鹼性物質析出、沉澱重金屬,以有機化合物析出、泡沫附著重金屬,以及以離子交換劑吸附或溶媒抽提重金屬的方法進行重金屬工業污水處理是目前重金屬工業污水處理的常用手段。在污水問題解決過程中,生產費用、脫除率、二次污染、操作性能等特點的不同,使得各處理方法有著各自的優勢和弊端。本文從以下幾個方面進行了簡要分析。
(1)從水溶液中析出溶解的重金屬後以浮選脫除的方法?1)與共沉劑或硫化劑反應,生成的析出物用浮選脫除的方法用氫氧化高鐵作共沉劑,硫化鈉作硫化劑,這些葯劑單獨或講用,從水中析出重金屬後,添加浮選葯劑進行浮選。2)呈氫氧化物析出,析出物用浮選脫除的方法。加鹼使重金屬呈氫氧化物析出,用烷基苯磺酸鈉作浮選葯劑浮選分離。3)和黃葯反應,析出物用浮選脫除的方法山。加入黃葯,析出氣抱吸附性反應物浮選分離。4)用其他葯劑處理析出,將析出物浮選脫除的方法。其中有氨基十八烷二叛酸鈉,酞化氨基酸的氨化物,a一磺基十二烷酸鈉、單烷基磷酸,脂肪酸二梭酸鈉、二硫代氨基甲酸鈉,十六烷三甲基澳化按等和重金屬離子反應,對其析出物進行浮選的研究報告。
(2)溶媒萃取法?例如,溶於己烷等有機溶媒中的二甲基乙二肪、高分子量胺等和溶於水溶液中的重金屬離子反應,將反應物萃取到有機溶媒中的方法。
(3)溶媒萃取和浮選法聯山大合法?加入葯劑與水中溶解的重金屬鹽反應,生成難溶於水的反應物,在反應物吸附在氣泡上浮出後,使其溶解在不與水混合的上層有機溶媒中藉以脫除的方法。
(4)利用離子交換劑等吸附劑脫除的方法?利用沸石,離子交換樹脂,烷基苯磺酸鈉等的離子交換能除去水溶液中重金屬離子的方法。除此之外,還有使用天然敘永石和超微鱗片,硝基腐殖酸,纖維素硫代叛酸,二苯硫代偕腆蹤一類構造的贅合樹脂,氯化乙烯原料活性炭,骨炭,氮化活性炭,硅酸鈣等吸附重金屬離子脫除的方法。
此外,用耐汞性細菌將汞化合物分解脫除的方法以及蒙脫石與黃葯餅用析出沉澱脫除也是重金屬五十處理常用的方法之一。
五 結語
工業廢水的排放是造成自然資源和環境污染的重要因素之一,對於生態環境的可持續發展有著嚴重的影響。特別是重金屬工業污水,其肆意排放對於人類的生存有著巨大的危害,其難以自然降解的特點使得重金屬工業污水的有效處理的重要性尤為突出。因此,我們必須在不斷深化研究的基礎上,重視對重金屬工業污水處理技術的研發,從而提高重金屬工業污水處理的社會經濟效益。
相信經過以上的介紹,大家對論重金屬工業污水的處理也是有了一定的認識。歡迎登陸中達咨詢,查詢更多相關信息。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
Ⅶ 重金屬污染是指什麼,都有哪些
重金屬指相對密度大於5的金屬(一般指密度大於4.5克/厘米3的金屬),就一般情況而言,造成土壤污染的重金屬主要是指生物毒性顯著的汞、鎘、鉛、鉻以及類金屬砷,還包括具有毒性的重金屬鋅、銅、鈷、鎳、錫、釩等污染物。重金屬的污染物通過各種途徑進入土壤,造成土壤嚴重污染。
目前,全世界平均每年排放汞約1.5萬噸、銅為340萬噸、鉛為500萬噸、錳為1500萬噸、鎳為100萬噸,造成了各國程度不同的土壤重金屬污染。土壤重金屬污染直接影響到土壤質別、水質狀況、作物生長、農業產量、農產品品質等。由於重金屬不能被生物降解,相反卻能在食物鏈的生物放大作用下,成千百倍地富集,最後進入人體。重金屬在人體內能和蛋白質及酶等發生強烈的相互作用,使他們失去活性,也可能在人體的某些器官中累積,造成慢性中毒,輕者發生怪病(如日本的水俁病、骨痛病等),重者就會死亡。因此重金屬對食品安全性的影響十分重要。從這一點上講,充分認識土壤重金屬污染的長期性、隱匿性、不可逆性以及不能完全被分解或消逝的特點,進行重金屬污染的治理,已經成為世界各國廣泛重視的問題。
食品生產中人為不安全因素在20世紀60至70年代,澳大利亞、美國、德國等國家就開始了對土壤重金屬污染的研究。我國對重金屬污染的研究起步於20世紀80年代,研究的主要方向集中在土壤重金屬的生態效應、臨界含量地帶性分異規律和分區等問題上。大氣中重金屬的沉降、工業廢水的灌溉以及金屬礦山酸性廢水污染,都加重了土壤的重金屬污染。
1.超標的鉛
從2006年8月末開始,甘肅徽縣水陽鄉陸續有八九百人到西安西京醫院進行血鉛檢測,其中373人為兒童。這些兒童中,90%以上血鉛超標,最高者血鉛含量619微克/升,超標數倍(鉛中毒即連續2次靜脈血鉛水平等於或高於200微克/升),被診斷為重度鉛中毒,而成人中血鉛超標也很普遍。當地村民認為,位於水陽鄉新寺村旁的一家鉛錠冶煉廠是「罪魁禍首」。2006年9月12日甘肅省政府召開的新聞發布會,經過調查組初步監測,造成甘肅省隴南市徽縣水陽鄉334名兒童血鉛超標事故的徽縣有色金屬冶煉有限責任公司周邊400米范圍內土地已經全部被污染。甘肅省環保局聯合調查組已經責成當地政府對遺存污染源進行進一步清理,徹底拆除冶煉生產的其他附屬設施,對拆除的有關設施不得轉移,以免造成新的污染;粗鉛冶煉廢渣屬於危險廢渣,對臨時渣場堆存的廢渣以及廠區內存渣、周圍道路鋪墊渣也要進行清理。
鉛進入人體後,除部分通過糞便、汗液排泄外,其餘在數小時後溶入血液中,阻礙血液的合成,導致人體貧血,出現頭痛、眩暈、乏力、睏倦、便秘和肢體酸痛等;有的口中有金屬味,動脈硬化、消化道潰瘍和眼底出血等症狀也與鉛污染有關。小孩鉛中毒則出現發育遲緩、食慾不振、行走不便和便秘、失眠;若是小學生,還伴有多動、聽覺障礙、注意力不集中、智力低下等現象。這是因為鉛進入人體後通過血液侵入大腦神經組織,使營養物質和氧氣供應不足,造成腦組織損傷所致,嚴重者可能導致終身殘廢。成年人鉛中毒後經常會出現:疲勞、情緒消沉、心臟衰竭、腹部疼痛、腎虛、高血壓、關節疼痛、生殖障礙、貧血等症狀。孕婦鉛中毒後會出現流產、新生兒體重過輕、死嬰、嬰兒發育不良等嚴重後果。
鉛中毒預防和檢測工作非常重要。可是鉛中毒後的症狀往往非常隱蔽難以被發現,所以目前最可靠的方法就是血檢。
有效地防止鉛中毒,是當今科學家正在探索、攻克的課題之一。但作為個人,加強防範、進行自我保護是十分重要的。首先不要使用含鉛材料做飲食用具,最好不要用彩釉陶瓷製品盛裝酸性食物和飲料;蔬菜水果食用前要洗凈,能去皮的要去皮;平時多吃檸檬、捲心菜、海藻、海參、草魚、柿子和大蒜等蔬菜、水果,以利於解毒、排鉛。
2.汞中毒
20世紀50年代初,在日本九州島南部熊本縣的一個叫水俁鎮的地方,出現了一些患口齒不清、面部發呆、手腳發抖、精神失常的病人,這些病人經久治不愈,就會全身彎曲,悲慘死去。這個鎮有4萬居民,幾年中先後有1萬人不同程度的患有此種病,其後附近其他地方也發現此類病症。經數年調查研究,於1956年8月由日本熊本國立大學醫學院研究報告證實,這是由於居民長期食用了八代海水俁灣中含有汞的海產品所致,該事件被認為是一起重大的工業災難。
汞也稱水銀,是我們常用的溫度表裡顯示多少度的銀白色金屬,它是一種劇毒的重金屬,具有較強的揮發性。汞對於生物的毒性不僅取決於它的濃度,而且與汞的化學形態以及生物本身的特徵有密切關系。一般認為,汞是通過海洋生物體表(皮膚和鰓)的滲透或攝入含汞的食物進入體內的。汞進入海洋的主要途徑是工業廢水、含汞農葯的流失以及含汞廢氣的沉降。此外,含汞的礦渣和礦漿也是其來源之一。
科學試驗證實,人體血液中汞的安全濃度為1微克/10毫升,當到達5~10微克/10毫升時,就會出現明顯中毒症狀。經計算,如果一個人每天食用200克含汞0.5毫克/千克的魚,人體所攝入的汞量恰好在此安全范圍內。然而,經測定水俁灣的海產品汞的含量高達每千克幾十毫克,已大大超標。此外,人們每天還要搭配其他食品,其中也可能含有一定量的汞,這樣全天攝入的總量就更是大大超過安全限度標准了。
汞極易於由環境中的污染物通過各種途徑對食品造成污染,直接影響人們的飲食安全,危害人體的健康。汞是蓄積作用較強的元素,主要在動物體內蓄積。湖泊、沼澤中的水生植物、水產品易蓄積大量的汞。魚是汞的天然濃縮器,魚齡越大,體內蓄積的汞就越多。20世紀50年代後期,農業上使用含汞殺蟎劑以來,汞對土壤、自然水系、大氣的污染日益嚴重。工廠排放含汞的廢水,是水體污染的主要來源。我國生活飲用水水質衛生標准規定汞不超過0.001毫克/升。
3.鎘污染
20世紀初期開始,人們發現日本中部地區的富山縣水稻普遍生長不良。1931年又出現了一種怪病,患者大多是婦女,病症表現為腰、手、腳等關節疼痛。病症持續幾年後,患者全身各部位會發生神經痛、骨痛現象,行動困難,甚至呼吸都會帶來難以忍受的痛苦。到了患病後期,患者骨骼軟化、萎縮,四肢彎曲,脊柱變形,骨質鬆脆,就連咳嗽都能引起骨折。患者不能進食,疼痛無比,常常大叫「痛死了!」「痛死了!」有的人因無法忍受痛苦而自殺。這種病由此得名為「骨痛病」或「痛痛病」(Itai?Itai Disease)。1946—1960年,日本醫學界從事綜合臨床、病理、流行病學、動物實驗和分析化學的人員經過長期研究後發現,「骨痛病」是由於神通川上游的神岡礦山廢水引起的鎘中毒。據記載,由於工業的發展,富山縣神通川上游的神岡礦山從19世紀80年代成為日本鋁礦、鋅礦的生產基地。神通川流域從1913年開始煉鋅,「骨痛病」正是由於煉鋅廠排放的含鎘廢水污染了周圍的耕地和水源而引起的。
鎘是重金屬,是對人體有害的物質。人體中的鎘主要是由於被污染的水、食物、空氣通過消化道與呼吸道攝入體內的,大量積蓄就會造成鎘中毒。神岡的礦產企業長期將沒有處理的廢水排放注入神通川,致使高濃度的含鎘廢水污染了水源。用這種含鎘的水澆灌農田,稻秧生長不良,生產出來的稻米成為「鎘米」。「鎘米」和「鎘水」把神通川兩岸的人們帶進了「骨痛病」的陰霾中。1961年,富山縣成立了「富山縣地方特殊病對策委員會」,開始了國家級的調查研究。1967年研究小組發表聯合報告,表明「骨痛病」主要是由於重金屬尤其是鎘中毒引起的。1968年開始,患者及其家屬對金屬礦業公司提出民事訴訟,1971年審判原告勝訴。被告不服上訴,1972年再次判決原告勝訴。
環境中的鎘可通過水生生物的養殖進入食品。作物的根系可吸收土壤中的鎘,鎘污染地區的蔬菜糧食等食物中的鎘含量遠高於無污染地區。鎘在人體積蓄作用,潛伏期可長達10~30年。鎘被人體吸收後,在體內形成鎘硫蛋白,選擇性地蓄積於腎、肝中。其中,腎臟可吸收進入體內近1/3的鎘,是鎘中毒的「靶器官」。其他臟器如脾、胰、甲狀腺和毛發等也有一定量的蓄積。鎘在體內可與含羥基、氨基、硫基的蛋白質分子結合,使許多酶系統受到抑制,從而影響肝、腎器官中酶系統的正常功能。由於鎘損傷腎小管,病者出現糖尿、蛋白尿和氨基酸尿。特別是使骨骼的代謝受阻,造成骨質疏鬆、萎縮、變形等一系列症狀。
平時多飲水,多喝淡鹽水,多吃紫菜、海帶,有利於防治鎘中毒。根據世界衛生組織的建議,每人每周接觸的鎘不應超過每千克體重7微克。各國對工業排放「三廢」中的鎘都做出了極為嚴格的規定。應注意呼吸系統或腎臟損害為主的臨床表現和尿鎘測定,以及早診斷和排除鎘中毒,並給予積極的處理。
4.有害的砷
砷污染中毒事件或導致的公害病(慢性砷中毒)已屢見不鮮。如在英國曼徹斯特因啤酒中添加含砷的糖,造成6000人中毒和71人死亡。日本森永奶粉公司,因使用含砷中和劑,引起12100多人中毒,130人因腦麻痹而死亡。典型的慢性砷中毒在日本宮崎縣呂久砷礦附近,因土壤中含砷量高達300~838毫克/千克,致使該地區小學生慢性中毒。日本島根縣谷銅礦山居民也有慢性中毒患者。我國規定居民區大氣砷的日平均濃度為3微克/立方米,飲用水中砷最高容許濃度為0.04毫克/升,地表水包括漁業用水為0.04毫克/升。
作為氮家族的一員,砷是無臭無味的半金屬,自然存在於岩石和土壤中。它可以與其他元素合成有機和無機砷,而後者毒性更強,在水中更常見。含砷廢水、農葯及煙塵都會污染土壤。砷在土壤中累積並由此進入農作物組織中。砷對農作物產生毒害作用最低濃度為3毫克/升,對水生生物的毒性亦很大。砷和砷化物一般可通過水、大氣和食物等途徑進入人體,造成危害。
砷進入人體內被吸收後,破壞了細胞的氧化還原能力,影響細胞正常代謝,引起組織損害和機體障礙,可直接引起中毒死亡。如果將砷作用於人體局部,最初有刺激症狀,久之出現組織壞死。砷對黏膜具有刺激作用,可直接損害毛細血管。經黏膜(包括陰道)或皮膚吸收的砷及化合物,主要沉積在毛發、指甲、骨、肝和腎等器官。常人服入三氧化二砷0.01~0.05克,即可中毒,出現中毒症狀;服入0.06~0.2克,即可致死;在含砷化氫為1毫克/升的空氣中,呼吸5~10分鍾,可發生致命性中毒。世衛組織認為,長期飲用含砷量超過10毫克/升的水可導致砷中毒,這是一種導致皮膚紊亂、壞疽以及腎癌和膀胱癌的慢性病。
由於砷與毛發、指甲皮膚的角化組織有親和力,無論是慢性砷中毒或急性砷中毒,只要其中毒後尚存活一周以上,便可從毛發中發現較多含量的砷。而頭發中的微量元素與人血中的成分比較相似,它能准確地反映出人體內部新陳代謝的狀況。而血液的各種成分都是來自周圍環境以及在此環境中產生的食物。
對於砷中毒者可用二巰基丙磺酸鈉或二巰基丁二酸鈉等解毒葯對症治療。治理砷污染,首先不要將高砷水用來灌溉,其次不要讓在受到砷污染的土壤上種植的植物進入食物鏈。對於已經受到污染的土壤,可以用植物來進行環境修復。
總的來說,控制重金屬對食品的污染首先要從源頭上把關,嚴格控制工業「三廢」和城市生活垃圾對農業環境的污染。其次,加快推行標准化生產,加強農產品質量安全關鍵控制技術研究與推廣,加大無公害農產品生產技術標准和規范的實施力度。第三,加強食品安全監督與檢驗,強化質量管理,完善食品安全檢驗檢測體系。另外,還要加強食品安全教育,提高公眾環保意識,加強群眾監督,共同保護自然生態環境,維護人體健康。