㈠ MBR如何處理氨氮印染廢水
在污水復處理,水資源再利制用領域,MBR又稱膜生物反應器(Membrane Bio-Reactor),是一種由膜分離單元與生物處理單元相結合的新型水處理技術。膜的種類繁多,按分離機理進行分類,有反應膜、離子交換膜、滲透膜等;按膜的性質分類,有天然膜(生物膜)和合成膜(有機膜和無機膜) ;按膜的結構型式分類,有平板型、管型、螺旋型及中空纖維型等。
處理氨氮的原理:
由於微生物被完全截流在生物反應器內,從而有利於增殖緩慢的微生物如硝化細菌的截留生長,系統硝化效率得以提高。同時,可增長一些難降解的有機物在系統中的水力停留時間,有利於難降解氨氮以及有機物降解效率的提高。
㈡ mbr膜技術可以應用於哪些污水處理項目中
mbr膜技術可以應用的項目如下:
1、城鎮生活污水
城鎮污水處理排放標准日趨嚴格,傳統生活污水處理工藝難以穩定達到國標一級A及更高的地標四類水標准。污水處理廠採用MBR技術可以提升水質,保障污水處理廠的出水穩定。
3、養殖屠宰廢水
養殖廢水是污染問題比較嚴重的點源、面源污染。並且在養殖的時候養殖水含有大量的有機物和氮磷等營養元素,盡管可以進行農業生產,但是如果廢水不經過處理,會帶來比較嚴重的環境污染。
4、黑臭水體修復
黑臭水體通常由有機物、氮、磷等外源污染物的超標排放造成,在氧化分解過程中耗氧速率大於復氧速率,導致水體溶解氧濃度降低,水體轉化成缺氧或厭氧狀態。採用MBR膜技術可以快速提升改善河道水質,再結合生態修復法可以提升水體自凈能力。
5、化學制葯廢水
化學制葯廢水成分復雜,有機污染物種類比較多,會帶來比較嚴重的污染問題。MBR膜技術處理制葯廢水效果顯著,兼具能耗低、佔地小、水質穩定達標等優勢。
6、制酒廢水
酒類生產製造過程中的廢水有機物含量比較高,通過利用MBR膜技術對於啤酒廢水進行處理,能夠將啤酒廢水當中的氨氮的SS等物質進行有效的去除,提高良好的去除效果。
https://www.lidinghb.com/
㈢ MBR技術在污水處理中的應用
下面是中達咨詢給大家帶來關於施工臨時用電的存在問題及正確做法的相關內容,以供參考。
膜生物反應器(MembraneBioreactor,簡稱MBR),是由膜分離和生物處理結合而成的一種新型瞎凳、高效的污水處理技術。膜分離技術最早應用於微生物發酵工業,隨著膜材料和制膜技術的發展,其應用領域不斷擴大,已經涉及到化工、電子、輕工、紡織、冶金、食品、石油化工和污水處理等多個領域。
1、MBR技術在國外污水處理中的研究及應用
膜分離技術在污水處理中的應用開始於20世紀60年代末#1969年美國的Smith等人首次將活性污泥法與超濾膜組件相結合用於處理城市污水的工藝研究,該工藝大膽地提出了用膜分離技術取代常規活性污泥法中的二沉池,利用膜具有高效截留的物理特性,使生物反應器內維持較高的污泥濃度,在F/M低比值下工作,這樣就可以使有機物盡可能地得到氧化降解,提高了反應器的去除效率,這就是MBR的最初雛形。
進入20世紀70年代,有關MBR的研究進一步深入開展#1970年,Hardt等人使用完全混合生物反應器與超濾膜組合工藝處理生活污水,獲得了98%的COD去除率和100%去除細菌的結果。1971年,Bemberis等人在污水處理廠進行了MBR試驗,取得了良好的試驗結果。1978年,Bhattacharyya等人將超濾膜用於處理城市污水,獲得了非飲用回用水。1978年,Grethlein利用厭氧消化池與膜分離進行了處理生活污水的研究,BOD和TN的去除率分別為90%和75%.
在這一時期,盡管各國學者對MBR工藝做了大量的研究工作,並獲得了一定的研究成果,但是由於當時膜組件的種類很少,制膜工藝也不是十分成熟,膜的壽命通常很短,這就限制了MBR工藝長期穩定的運行,從而也就限制了MBR技術在實際工程中的推廣應用。
進入20世紀80年代以後,隨著材料科學的發展與制膜水平的提高,推動了膜生物反應器技術的向前發展,MBR工藝也隨之得到迅速發展。日本研究者根據本國國土狹小!地價高的特點對MBR技術進行了大力開發和研究,並在MBR技術的研究和開發上走在了前列,使MBR技術開始走向實磨亮旅際應用。
20世紀90年代以後,MBR技術得到了最為迅猛的發展,人們對MBR在生活污水處理!工業廢水處理!飲用水處理等方面的應用都進行了研究,MBR已經進入實際應用階段,並得到了快速的推廣。
20世紀的最後幾年,人們圍繞著膜生鍵迅物反應器的關鍵問題進行了較多的研究,並取得了一些成果。有關膜生物反應器的研究從實驗室小試!中試規模走向了生產性試驗,應用MBR的中、小型污水處理廠也逐漸見諸報道。1998年初,歐洲第一座應用一體式膜生物反應器的生活污水處理廠在英國的Porlock建成運行,成為英國膜生物反應器技術的里程碑。
本世紀初,人們對膜生物反應器的研究方興未艾,使得該項技術正在逐漸趨於成熟。
2、MBR技術在國內污水處理中的研究及應用
我國對膜生物反應器的研究雖然起步較晚,但發展速度很快。1991年,芩運華對膜生物反應器的應用進行了綜述,介紹了MBR在日本的研究狀況,這是我國學者對膜生物反應器做的較早的報道。隨後,江成璋等人進行了中空纖維超濾膜在生物技術中的應用研究。1995年,樊耀波將MBR用於石油化工污水凈化的研究,研製出一套實驗室規模的好氧分離式MBR.
從1995年以來,我國對膜生物反應器污水處理技術的研究工作開始全面展開,多家科研院所進行了此方面的研究,清華大學、哈爾濱工業大學、中國科學院生態環境研究中心、天津大學、同濟大學等對膜生物反應器的運行特性、膜通量的影響因素、膜污染的防止與清洗等方面做了大量細致的研究工作。2000年,顧平採用國產中空纖維膜對生活污水做了中試規模的MBR研究,結果表明:MBR工藝出水懸浮物為零,細菌總數優於飲用水標准,COD和氨氮的去除率都高於95%,出水可直接回用。2001年,張立秋等對一體式MBR處理生活污水的主要設計參數HRT、SRT等進行了理論推導,為實際工程設計提供了參考,並對膜堵塞機理進行了深入研究探討,提出了膜內部生物堵塞的存在。
雖然,我國在MBR技術的研究探討方面取得了顯著的成績,但是同日本、英國、美國等國家相比,我國的研究試驗水平還比較落後,由於國產膜組件的種類較少,膜質量較差,壽命通常較短,因此在實際應用中存在一定的問題。雖然在我國膜生物反應器用於處理生活污水已有應用,但到目前為止,設計完善、運行良好的應用膜生物反應器的生活污水處理廠還未見報道。
3、MBR工藝的分類
膜生物反應器主要是由膜組件和生物反應器兩部分組成#根據膜組件與生物反應器的組合方式可將膜生物反應器分為以下三種類型:分置式膜生物反應器、一體式膜生物反應器和復合式膜生物反應器。
3.1分置式膜生物反應器
分置式膜生物反應器是指膜組件與生物反應器分開設置,相對獨立,膜組件與生物反應器通過泵與管路相連接#分置式膜生物反應器的工藝流程如圖1所示。
該工藝膜組件和生物反應器各自分開,獨立運行,因而相互干擾較小,易於調節控制,而且,膜組件置於生物反應器之外,更易於清洗更換#但其動力消耗較大,加壓泵提供較高的壓力,造成膜表面高速錯流,延緩膜污染,這是其動力費用大的原因,每噸出水的能耗為2~10kWh,約是傳統活性污泥法能耗的10~20倍,因此能耗較低的一體式膜生物反應器的研究逐漸得到了人們的重視。
3.2一體式膜生物反應器
一體式膜生物反應器起源於日本,主要用於處理生活污水,近年來,歐洲一些國家也熱衷於它的研究和應用#一體式膜生物反應器是將膜組件直接安置在生物反應器內部,有時又稱為淹沒式膜生物反應器(SMBR),依靠重力或水泵抽吸產生的負壓或真空泵作為出水動力#一體式膜生物反應器工藝流程如圖2所示。該工藝由於膜組件置於生物反應器之中,減少了處理系統的佔地面積,而且該工藝用抽吸泵或真空泵抽吸出水,動力消耗費用遠遠低於分置式膜生物反應器,每噸出水的動力消耗約是分置式的1/10.如果採用重力出水,則可完全節省這部分費用。但由於膜組件浸沒在生物反應器的混合液中,污染較快,而且清洗起來較為麻煩,需要將膜組件從反應器中取出。
3.3復合式膜生物反應器
復合式膜生物反應器也是將膜組件置於生物反應器之中,通過重力或負壓出水,但生物反應器的型式不同#復合式MBR,是在生物反應器中安裝填料,形成復合式處理系統。
在復合式膜生物反應器中安裝填料的目的有兩個:一是提高處理系統的抗沖擊負荷,保證系統的處理效果;二是降低反應器中懸浮性活性污泥濃度,減小膜污染的程度,保證較高的膜通量。
復合式膜生物反應器中,由於填料上附著生長著大量微生物,能夠保證系統具有較高的處理效果並有抵抗沖擊負荷的能力,同時又不會使反應器內懸浮污泥濃度過高,影響膜通量。
4、MBR工藝的特點
4.1對污染物的去除效率高
MBR對懸浮固體(SS)濃度和濁度有著非常良好的去除效果。由於膜組件的膜孔徑非常小(0.01~1μm),可將生物反應器內全部的懸浮物和污泥都截留下來,其固液分離效果要遠遠好於二沉池,MBR對SS的去除率在99%以上,甚至達到100%;濁度的去除率也在90%以上,出水濁度與自來水相近。
由於膜組件的高效截留作用,將全部的活性污泥都截留在反應器內,使得反應器內的污泥濃度可達到較高水平,最高可達40~50g/L.這樣,就大大降低了生物反應器內的污泥負荷,提高了MBR對有機物的去除效率,對生活污水COD的平均去除率在94%以上,BOD的平均去除率在96%以上。
同時,由於膜組件的分離作用,使得生物反應器中的水力停留時間(HRT)和污泥停留時間(SRT)是完全分開的,這樣就可以使生長緩慢、世代時間較長的微生物(如硝化細菌)也能在反應器中生存下來,保證了MBR除具有高效降解有機物的作用外,還具有良好的硝化作用。研究表明,MBR在處理生活污水時,對氨氮的去除率平均在98%以上,出水氨氮濃度低於1mg/L.
此外,選擇合適孔徑的膜組件後,MBR對細菌和病毒也有著較好的去除效果,這樣就可以省去傳統處理工藝中的消毒工藝,大大簡化了工藝流程。
另外,在DO濃度較低時,在菌膠團內部存在缺氧或厭氧區,為反硝化創造了條件。僅採用好氧MBR工藝,雖然對TP的去除效率不高,但如果將其與厭氧進行組合,則可大大提高TP的去除率。研究表明,採用A/O復合式MBR工藝,對TP的去除率可達70%以上。
4.2具有較大的靈活性和實用性
在城市污水或工業廢水處理中,傳統的處理工藝(格柵+沉砂池+初沉池+曝氣池+二沉池+消毒池)流程較長,佔地面積大,而出水水質又不能保證。而MBR工藝(篩網過濾+MBR)則因流程短、佔地面積小!處理水量靈活等特點,而呈現出明顯優勢#MBR的出水量根據實際情況,只需增減膜組件的片數就可完成產水量調整,非常簡單、方便。
對於傳統的活性污泥法工藝中出現的污泥膨脹現象,MBR由於不用二沉池進行固液分離,可以輕松解決。這樣,就大大減輕了管理操作的復雜程度,使優質!穩定的出水成為可能。
同時,MBR工藝非常易於實現自動控制,提高了污水處理的自動化水平。
4.3解決了剩餘污泥處置難的問題
剩餘污泥的處置問題,是污水處理廠運行好壞的關鍵問題之一#MBR工藝中,污泥負荷非常低,反應器內營養物質相對缺乏,微生物處在內源呼吸區,污泥產率低,因而使得剩餘污泥的產生量很少,SRT得到延長,排除的剩餘污泥濃度大,可不用進行污泥濃縮,而直接進行脫水,這就大大節省了污泥處理的費用。有研究得出,在處理生活污水時,MBR最佳的排泥時間在35d左右。
由上述可知,MBR工藝所具有的優越性,是目前其他處理工藝無法比擬的#該工藝在城市污水或生活污水處理!高濃度有機廢水、難降解有機廢水以及中水回用等方面都具有廣闊的應用前景。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
㈣ mbr工藝對進水水質有什麼要求
MBR膜進水水質要求:
mbr膜進水水質要求:
指標:允許范圍
進料水源:適用於各種水源,最大污泥濃度15000ppm。
pH(運行):1~12
pH(清洗):1~12(3G-TIPS、4G-TIPS產品可到14)
溫度(℃):5~45
最大過濾跨膜壓力(MPa):0.05
最大反洗跨膜壓力(MPa):0.05
進料顆粒粒徑:≤2mm,膜所處的水池中應不含破壞膜的尖銳物,如樹枝,塑料片,砂粒等。
進料中含油量:<2mg/L,否則必須先進行除油預處理。
硬度:視pH值、結垢傾向確定指標。
mbr膜進水水質條件:
油脂含量等請將原水的正已烷提取物質控制在50mg/L以下。
① 一般地,精密過濾膜上附著油分(動植物油或礦物油)的話,膜面有可能堵塞,所以不要直接將含有油分的原水投到活性污泥池中。原水的正已烷提取物質超過50mg/L時,請對油水進行分離或採用加壓浮上法等實施前處理,調整到50mg/L以下。
②如果是活性污泥等可降解的油分,如動植物油,通過維持高 MLSS濃度,在某種程度上可控制膜面堵塞。但是,當正已烷提取物質超過50mg/L時,油分會附著在膜面上,有可能發生堵塞,因此建議進行前處理。
③因礦物油難以降解,所以比起動植物油會對膜產生更惡劣的影響。當礦物油混入時,要特別注意。
④當原水中混入大量表面活性劑時,有可能在曝氣池內產生泡沫,產生污泥溢流等故障。
消泡劑
不可使用硅系列的消泡劑。
需要使用消泡劑時,請使用高級乙醇類或醚類、酯類的消泡劑。
①污泥產生泡沫,需要投入消泡劑時,請使用高級乙醇類或醚類、酯類的消泡劑。
②如果使用了硅系列的消泡劑,消泡劑會吸附在膜面上,會加速膜間壓差的上升。硅系列消泡劑的吸附,使得葯液清洗非常困難,因此,有時需要更換膜。
③污泥產生泡沫時,請並用水拍打泡沫表面等物理性的消泡方法,使得消泡劑的使用量控制在最低限度。
其他
①本膜組件過濾時,對於原水必須要事先實施生化處理。不實施生化處理而直接過濾的時候,溶解在原水中的未處理的有機物會附著在膜面上,加速膜間壓差的上升,從而妨礙穩定運行。
②脫水機的脫離液中未凝聚的凝聚劑有時會吸附在膜面上,妨礙穩定運行,因此不要投入過多的凝聚劑。
㈤ 污水處理廠MBR一體化設備出水氨氮不高,總氮超標是什麼原因如何解決
城市污水處理廠出水氮磷超標因素分析及對策
摘要:脫氮除磷工藝越來越多的應用到城市污水處理廠當中,但是在實際運行過程中,出水氮磷含量超標的情況常常困擾著水廠的工作人員。因此,釐清脫氮除磷工藝的重要參數並加以控制,能夠很好的保證系統的正常運行,出水氮磷含量達標。
關鍵詞:城市污水處理廠,脫氮除磷,對策分析
1概述
近年來污水處理的主要工藝已發生變化,從常規二級處理逐漸變為重視脫氮除磷的深度處理上來。但是在實際運行過程中,由於工藝復雜性及參數的變化性,導致常常出水氮磷含量超標,影響著水廠的運行。因此,釐清脫氮除磷工藝的重要參數並加以控制,能夠很好的保證系統的正常運行。
2污水氮含量超標原因及控制方法
2.1氨氮超標
2.1.1污泥負荷與污泥齡
生物硝化屬低負荷工藝,F/M一般在0.05~0.15kgBOD/kgMLVSS?d。負荷越低,硝化進行得越充分,NH3-N向NO3--N轉化的效率就越高。與低負荷相對應,生物硝化系統的SRT一般較長,因為硝化細菌世代周期較長,若生物系統的污泥停留時間過短,污泥濃度較低時,硝化細菌就培養不起來,也就得不到硝化效果。SRT控制在多少,取決於溫度等因素。對於以脫氮為主要目的生物系統,通常SRT可取11~23d。
2.1.2迴流比與水力停留時間
生物硝化系統的迴流比一般較傳統活性污泥工藝大,主要是因為生物硝化系統的活性污泥混合液中已含有大量的硝酸鹽,若迴流比太小,活性污泥在二沉池的停留時間就較長,容易產生反硝化,導致污泥上浮。通常迴流比控制在50~100%。生物硝化曝氣池的水力停留時間也較活性污泥工藝長,至少應在8h以上。這主要是因為硝化速率較有機污染物的去除率低得多,因而需要更長的反應時間。
2.1.3BOD5/TKN
BOD5/TKN越大,活性污泥中硝化細菌所佔的比例越小,硝化速率就越小,在同樣運行條件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。很多城市污水處理廠的運行實踐發現,BOD5/TKN值最佳范圍為2~3左右。
2.1.4溶解氧
硝化細菌為專性好氧菌,無氧時即停止生命活動,且硝化細菌的攝氧速率較分解有機物的細菌低得多,如果不保持充足的氧量,硝化細菌將「爭奪」不到所需要的氧。因此,需保持生物池好氧區的溶解氧在2mg/L以上,特殊情況下溶解氧含量還需提高。
2.1.5溫度與pH
硝化細菌對溫度的變化也很敏感,當污水溫度低於15℃時,硝化速率會明顯下降,當污水溫度低於5℃時,其生理活動會完全停止。因此,冬季時污水處理廠特別是北方地區的污水處理廠出水氨氮超標的現象較為明顯。硝化細菌對pH反應很敏感,在pH為8~9的范圍內,其生物活性最強,當pH<6.0或>9.6時,硝化菌的生物活性將受到抑制並趨於停止。因此,應盡量控制生物硝化系統的混合液pH大於7.0。
2.2 總氮超標
2.2.1污泥負荷與污泥齡
由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得高效而穩定的的反硝化。因而,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。
2.2.2內、外迴流比
生物反硝化系統外迴流比較單純生物硝化系統要小些,這主要是入流污水中氮絕大部分已被脫去,二沉池中NO3--N濃度不高。另一方面,反硝化系統污泥沉速較快,在保證要求迴流污泥濃度的前提下,可以降低迴流比,以便延長污水在曝氣池內的停留時間。運行良好的污水處理廠,外迴流比可控制在50%以下。而內迴流比一般控制在300~500%之間。
2.2.3缺氧區溶解氧
對反硝化來說,希望DO盡量低,最好是零,這樣反硝化細菌可以「全力」進行反硝化,提高脫氮效率。但從污水處理廠的實際運營情況來看,要把缺氧區的DO控制在0.5mg/L以下,還是有困難的,因此也就影響了生物反硝化的過程,進而影響出水總氮指標。
2.2.4BOD5/TKN
反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。由於目前許多污水處理廠配套管網建設滯後,進廠BOD5低於設計值,而氮、磷等指標則相當於或高於設計值,使得進水碳源無法滿足反硝化對碳源的需求,也導致了出水總氮超標的情況時有發生。
2.2.5溫度與pH
反硝化細菌對溫度變化雖不如硝化細菌那麼敏感,但反硝化效果也會隨溫度變化而變化。溫度越高,反硝化速率越高,在30~35℃時,反硝化速率增至最大。當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。反硝化細菌對pH變化不如硝化細菌敏感,在pH為6~9的范圍內,均能進行正常的生理代謝,但生物反硝化的最佳pH范圍為6.5~8.0。
3 污水生物除磷總磷超標原因及對策
3.1 污泥負荷與污泥齡
厭氧-好氧生物除磷工藝是一種高F/M低SRT系統。當F/M較高,SRT較低時,剩餘污泥排放量也就較多。因而,在污泥含磷量一定的條件下,除磷量也就越多,除磷效果越好。對於以除磷為主要目的生物系統,通常F/M為0.4~0.7kgBOD5/kgMLSS•d,SRT為較大,選擇價廉,易得的填料也是需要考慮的一個重要因子。
㈥ 污水處理的MBR工藝
MBR的英文全稱是Membrane Bio-Reactor,翻譯過來就是膜生物反應器
沒有接觸過的同學光聽名字肯定覺專得很抽象,但屬實際上其實很簡單,大家可以這么理解
MBR相對於傳統活性污泥法最大的改變就是去掉了二沉池加入了膜池。
簡單來說二沉池就是靠重力作用把泥和水分開,在這個環節里可能出現各種突發狀況,
比如污泥上浮池面有黑色塊狀污泥渣、泡沫等令無數環保人頭疼,
而MBR工藝中用到的膜和傳統二沉池的作用相同,就是進行固液分離,膜的好處就在於分離的更徹底。
㈦ MBR膜污水處理設備是怎麼處理污水的呢
在傳統的污水生物處理技術中,泥水分離是在二沉池中靠重力作用完成的,其專分離效率依賴於活性污屬泥的沉降性能,沉降性越好,泥水分離效率越高。而污泥的沉降性取決於曝氣池的運行狀況,改善污泥沉降性必須嚴格控制曝氣池的操作條件,這限制了該方法的適用范圍。由於二沉池固液分離的要求,曝氣池的污泥不能維持較高濃度,一般在1.5~3.5gL左右,從而限制了生化反應速率。水力停留時間(HRT)與污泥齡(SRT)相互依賴,提高容積負荷與降低污泥負荷往往形成矛盾。系統在運行過程中還產生了大量的剩餘污泥,其處置費用占污水處理廠運行費用的25%~40%。傳統活性污泥處理系統還容易出現污泥膨脹現象,出水中含有懸浮固體,出水水質惡化。
MBR工藝通過將分離工程中的膜分離技術與傳統廢水生物處理技術有機結合,不僅省去了二沉池的建設,而且大大提高了固液分離效率,並且由於曝氣池中活性污泥濃度的增大和污泥中特效菌(特別是優勢菌群)的出現,提高了生化反應速率。同時,通過降低F/M比減少剩餘污泥產生量(甚至為零),從而基本解決了傳統活性污泥法存在的許多突出問題。
㈧ 奼℃按姘ㄦ愛鍘婚櫎鏂規硶(奼℃按澶勭悊涓甯哥敤鐨勬皚姘鍘婚櫎鎶鏈)
姘ㄦ愛鏄鎸囨薄姘翠腑鐨勬皚鍜屾皚鍩哄寲鍚堢墿錛屾槸奼℃按涓鐨勪竴縐嶉噸瑕佹寚鏍囥傛皚姘鐨勫瓨鍦ㄤ細瀵艱嚧奼℃按涓鐨凜OD銆丅OD銆丼S絳夋寚鏍囩殑鍗囬珮錛屽悓鏃惰繕浼氬規按浣撶敓鎬佺幆澧冮犳垚涓ラ噸鐨勬薄鏌撳嵄瀹熾
甯哥敤鐨勬皚姘鍘婚櫎鎶鏈
鍦ㄦ薄姘村勭悊涓錛屽父鐢ㄧ殑姘ㄦ愛鍘婚櫎鎶鏈涓昏佸寘鎷鐢熺墿娉曘佺墿鐞嗘硶鍜屽寲瀛︽硶涓夌嶃
鐢熺墿娉
鐢熺墿娉曟槸鎸囧埄鐢ㄥ井鐢熺墿瀵規薄姘翠腑鐨勬皚姘榪涜岄檷瑙e拰杞鍖栫殑鏂規硶銆傚父鐢ㄧ殑鐢熺墿娉曞寘鎷珹O娉曘丼BR娉曘丮BR娉曠瓑銆
AO娉曟槸鎸囬氳繃濂芥哀鍜屽帉姘т袱涓闃舵電殑鍙嶅簲錛屽皢姘ㄦ愛杞鍖栨垚姘姘旂殑榪囩▼銆傚叿浣撴搷浣滄ラや負錛氶栧厛灝嗘薄姘磋繘鍏ュソ姘ф睜涓錛岃繘琛屾皚姘у寲浣滅敤錛屽皢姘ㄦ愛杞鍖栦負浜氱濋吀鐩愬拰紜濋吀鐩愶紱鐒跺悗灝嗘薄姘磋繘鍏ュ帉姘ф睜涓錛岃繘琛屽弽紜濆寲浣滅敤錛屽皢紜濋吀鐩愯繕鍘熶負姘姘旓紝鏈緇堝疄鐜版皚姘鐨勫幓闄ゃ
SBR娉曟槸鎸囬氳繃涓緋誨垪鐨勬搷浣滄ラわ紝灝嗘薄姘磋繘琛屽垎鎵瑰勭悊錛屾渶緇堝疄鐜版皚姘鐨勫幓闄ゃ傚叿浣撴搷浣滄ラや負錛氶栧厛灝嗘薄姘磋繘鍏SBR鍙嶅簲鍣ㄤ腑錛岃繘琛屽ソ姘у勭悊錛屽皢姘ㄦ愛杞鍖栨垚浜氱濋吀鐩愬拰紜濋吀鐩愶紱鐒跺悗榪涜岄潤緗娌夋穩錛屽皢奼℃按涓鐨凷S鍘婚櫎錛涙渶鍚庤繘琛屽帉姘у勭悊錛屽皢紜濋吀鐩愯繕鍘熶負姘姘旓紝瀹炵幇姘ㄦ愛鐨勫幓闄ゃ
MBR娉曟槸鎸囬氳繃鍒╃敤寰鐢熺墿鍜岃啘鎶鏈錛屽皢奼℃按涓鐨勬皚姘榪涜屽幓闄ょ殑鏂規硶銆傚叿浣撴搷浣滄ラや負錛氶栧厛灝嗘薄姘磋繘鍏MBR鍙嶅簲鍣ㄤ腑錛岃繘琛屽ソ姘у勭悊錛屽皢姘ㄦ愛杞鍖栨垚浜氱濋吀鐩愬拰紜濋吀鐩愶紱鐒跺悗閫氳繃鑶滄妧鏈榪涜岃繃婊わ紝灝嗘薄姘翠腑鐨凷S鍘婚櫎錛涙渶鍚庤繘琛屽帉姘у勭悊錛屽皢紜濋吀鐩愯繕鍘熶負姘姘旓紝瀹炵幇姘ㄦ愛鐨勫幓闄ゃ
鐗╃悊娉
鐗╃悊娉曟槸鎸囬氳繃鐗╃悊鎵嬫靛皢奼℃按涓鐨勬皚姘榪涜屽幓闄ょ殑鏂規硶銆傚父鐢ㄧ殑鐗╃悊娉曞寘鎷鍚擱檮娉曘佽秴婊ゆ硶銆佸弽娓楅忔硶絳夈
鍚擱檮娉曟槸鎸囬氳繃灝嗘薄姘翠腑鐨勬皚姘鍚擱檮鍦ㄥ惛闄勫墏涓婏紝瀹炵幇姘ㄦ愛鐨勫幓闄ゃ傚父鐢ㄧ殑鍚擱檮鍓傚寘鎷媧繪х偔銆佺誨瓙浜ゆ崲鏍戣剛絳夈
瓚呮護娉曟槸鎸囬氳繃鑶滄妧鏈灝嗘薄姘翠腑鐨勬皚姘榪涜岃繃婊わ紝瀹炵幇姘ㄦ愛鐨勫幓闄ゃ傝秴婊よ啘鐨勫瓟寰勬瘮涓鑸鐨勮繃婊よ啘灝忥紝鍙浠ユ湁鏁堝湴鍘婚櫎奼℃按涓鐨勬皚姘銆
鍙嶆笚閫忔硶鏄鎸囬氳繃灝嗘薄姘磋繘琛岄珮鍘嬪勭悊錛屼嬌鍏墮氳繃鍙嶆笚閫忚啘錛屽疄鐜版皚姘鐨勫幓闄ゃ傚弽娓楅忚啘鐨勫瓟寰勬瘮瓚呮護鑶滄洿灝忥紝鍙浠ュ幓闄ゆ洿澶氱殑姘ㄦ愛銆
鍖栧︽硶
鍖栧︽硶鏄鎸囬氳繃鍖栧﹀弽搴斿皢奼℃按涓鐨勬皚姘榪涜屽幓闄ょ殑鏂規硶銆傚父鐢ㄧ殑鍖栧︽硶鍖呮嫭姘鍖栭搧娉曘佹隘鍖栭摑娉曠瓑銆
姘鍖栭搧娉曟槸鎸囬氳繃鍔犲叆姘鍖栭搧錛屼嬌鍏朵笌奼℃按涓鐨勬皚姘鍙戠敓鍙嶅簲錛屽艦鎴愭矇娣鐗╋紝瀹炵幇姘ㄦ愛鐨勫幓闄ゃ
姘鍖栭摑娉曟槸鎸囬氳繃鍔犲叆姘鍖栭摑錛屼嬌鍏朵笌奼℃按涓鐨勬皚姘鍙戠敓鍙嶅簲錛屽艦鎴愭矇娣鐗╋紝瀹炵幇姘ㄦ愛鐨勫幓闄ゃ