導航:首頁 > 污水知識 > 廢水中的氯離子怎麼檢測

廢水中的氯離子怎麼檢測

發布時間:2024-07-05 12:41:52

㈠ 除了硝酸銀,還有什麼試劑能檢測氯離子

其實主要是ag+檢測

以下引用論文
摩爾法測定氯離子
摩爾法測定氯離子的范圍為=5~100 mg/L。周少玲等[2]從理論上指出以鉻酸鉀為指示劑,在中性或弱鹼性條件下,用硝酸銀標准溶液進行滴定實驗,由於AgCl的沉澱溶解損失,溶液中仍然余留0.44 mg/L的氯離子不能被滴定。所以對於氯離子含量低的水質用摩爾法測定會造成較大的分析誤差,而且測定精密度也較差。在用AgNO 3滴定氯離子的過程中,Ag+易與溶液中的氨形成銀氨絡離子Ag(NH 3)+,從而增加了AgNO 3的消耗量,造成分析結果偏高。所以,摩爾法測定中水中氯離子含量時,應控制溶液的pH值為中性。周強等[3]以耐鹽性較強的大麥品種「鑒4」幼苗為材料,用硝酸銀滴定法測定植物體內氯離子含量。結果得出在0~0.5 mol/L范圍內的線性關系較好,相關系數r為0.9986,但標准曲線未通過坐標原點。回收率為87.73% ~117.78%,RSD為10.80%。准確度僅為88.43%,變
異系數為10.33%。
摩爾法是一種傳統的測量方
法,但僅對氯離子含量高的物質
測定較准確,此方法採用的鉻酸
鉀和硝酸銀試劑是有毒物質,且
排放到環境中會造成環境污染;
硝酸銀試劑價格高,增加了測定
成本,影響了方法的實用性。
2.2
分光光度法
分光光度法是通過測定被測
物質在特定波長處或一定波長
范圍內光的吸收度,對該物質進
行定性和定量分析的方法。
楊學芬[4]
研究了以過氧化氫
為氧化劑,硝酸-
甘油為介質,
分光光度法測定工業亞磷酸中
氯離子含量。此系統的穩定性
高,測定波長為380 nm,氯離子
含量在1~6 g/mL
范圍內呈線性
關系,相關系數為0.9999,回收
率為96%~105%。
關瑞等[5]
通過研究氯化銀沉
淀在明膠-
乙醇水溶液中的穩
定性,建立了測定微量氯離子的
分光光度分析方法,並應用到有
機工藝水中微量氯離子的測定。
在實驗最佳條件下,氯離子濃度
在0~6 mg/L
范圍內呈良好線性,
相關系數為0.9993,方法的標准
偏差為0.108,變異系數為
0.026,回收率為101%~105%。該
方法的檢測限為1.35 ×10
- 2
mg/L。
顧立公[6]
利用在酸性條件下,
氯離子與硫氰酸汞反應生成微
電離的氯化汞絡合物,釋放出等
量的硫氰酸根與鐵(III)反應生
成紅色的絡合物,建立了硫氰酸
汞-
硝酸鐵間接分光光度法測
定水中的微量氯離子的方法,得
出氯離子含量在0.2~10 mg/L

圍內呈良好線性關系,相關系數為
0.9992,回收率在95.8%~102.1%。
本方法靈敏度高,重現性好,方
法簡便、
快速,可用於水中微量
氯離子的測定。
氯化物共沉澱富集分光光度
法是一種國標方法[7]
。該方法用
磷酸鉛沉澱做載體,共沉澱富集
痕量氯化物,經離心機分離後,
用硝酸鐵/
高氯酸溶液完全溶解
沉澱物,加硫氰酸汞/
甲醇溶液
顯色,用分光光度計間接測定痕
量氯離子,測定范圍為0.01~0.1
mg/L。
分光光度法可以精確測定微
量氯離子,靈敏度高,重現性好,
方法簡便、
快速。但是共沉澱富
集分光光度法採用的磷酸鉛、

氰酸汞和甲醇試劑是有毒物質,
影響操作人員的健康,且這些試
劑使用量很大,如果不加處理直
接排放則會造成嚴重的環境污
染。
2.3
濁度法
此濁度法是在比色法的基礎
上發展起來的,是根據測量光線
通過懸浮液後透射光的強度進
行分析的一種分析方法,在臨床
分析、
食品分析、
環境分析、
工業
分析、
葯物分析等研究工作中應
用廣泛。
陳振華等[8]
研究了在表面活
性劑下用硝酸銀濁度法測定Cl
-

結果表明,在0.3 mol/L
酸性條件
下,吐溫- 60
作為AgCl
濁度的
穩定劑,該方法的線性范圍為
0~8 g/mL,相關系數r =0.991,回
收率為87.75%~103.33%,可用
於發電廠爐水中Cl
-
的測定。
王愛榮等[9]
研究了以乙二醇
為增溶劑,硝酸銀作沉澱劑,采
用氯化銀比濁法,在不分離硫酸
銅的條件下,直接測定酸性鍍銅
液中微量氯離子。測定波長為
440 nm,線性范圍為0~2 g/mL,其
俞凌雲,等:氯離子測定方法及其應用研究行業論壇
33
西部皮革第31

表觀摩爾吸光系數ε=113 ×
105,方法檢出限為0.035 g/mL,
該法用於測定酸性鍍銅液中微
量氯離子在不同水平的加標回
收率為95.4%~104.5%。杜斌等[10]
研究了以非離子型微乳液乳化
劑OP/
正丁醇/
正庚烷/
水為介
質,
AgCl
濁度法測定氯離子的試
驗條件。該方法的線性范圍為
0.2~3.4 mg/L,
r =0.9997,
RSD <
2.8%,回收率為94%~104%,可
用於水泥原料、
生料及熟料中微
量氯離子的測定。
申海燕[11]
利用氯化銀沉澱在
明膠-
乙醇水溶液中的穩定性,
建立了一種測定有機工藝水中
微量氯離子的濁度法。該法的線
性范圍為0~6 mg/L,
r =0.9993,回
收率為95.2%~101.3%。王兆喜
等[12]
設置流動注射分析儀器參數
工作波長為450 nm,進樣頻率為
60
次/h,建立了反相流動注射比
濁法測定水中的氯離子含量的
方法。 氯離子的濃度在1.0 ×
10
- 5
~10.0×10
- 4
mol/L
范圍內與
吸光度呈良好線性關系,相關系
數為0.995,回收率為95%
~101%,
RSD<2.49%。
此濁度法操作簡便、分析時
間短、
所用試劑少、
運行成本低,
檢測手段簡單,可與流動注射等
其他先進技術聯用,易實現自動
化,程序化,前景十分廣闊。由於
此濁度法具有上述特點,故在分
析科學中有廣泛的應用。
2.4
離子色譜法
離子色譜法是比較新的離子
分離技術。這一方法現已廣泛應
用於環境監測、鹽水、土壤、

液、
鍋爐水、
乳製品等試樣的分
析之中。張新申等[13]
利用自製的
離子色譜儀對製革生產中的浸
酸廢液、
鉻鞣廢液、
污水中的
氯離子含量進行了測定。表明氯
離子濃度在10
- 5
~10
- 3
mol/L
范圍
內有很好的線性關系,測量上限
為10
- 2
mol/L,回收率為98.6%
~102.5%。朱子平[14]
採用萃取分
離法消除乳化液中有機組分對
測定組分的影響及對色譜柱所
造成的污染,應用離子色譜法檢
測了乳化液中氯離子。其加標平
均回收率為95%~105%,相對標
准偏差優於4.0%(n=20)。
陸克平
等[15]
採用在鹼性條件下加熱迴流
分解雙氧水,用離子色譜法測定
其中微量氯離子。得出雙氧水中
氯離子檢測限為0.06 g/mL,線性
方程為C=1.155 ×10
- 5
A- 0.
02435。
線性范圍為0.10~15.0
g/mL,濃度與面積的相關系數r
=0.9992。
王艷麗等[16]
用高純Cu
粉與
濃HNO 3
進行氧化還原反應,
170
℃加熱分解Cu(NO 3
)2
,去除絕大
部分NO 3
-
,研究了一種以離子色
譜電導檢測法測定HNO 3
中微、
痕量級Cl
-
的方法。Cl
-
的加標回
收率為87.5% ~93.7%

RSD(n
=5)<10%。劉燕等[17]
採用離子色
譜雙柱串聯法分離硝酸樣品,以
離子色譜電導檢測法測定硝酸
濾液中的痕量氯離子。氯離子濃
度在0.01~0.30 mg/L
范圍內與色
譜峰面積成線性關系,線性相關
系數r =0.997,對硝酸樣品進行
測定,氯離子的加標回收率為
96.5%~99.0%,測定結果的相對
標准偏差為1.84% ~ 2.83%(n
=5)。
宋曉年等[18]
採用預濃縮離子
色譜法(採用濃縮柱預先濃縮樣
品然後進來)測定高純度水中痕
量氯離子,分析結果線性回歸後
得出方程為H = 0.429C- 0.596,
式中H
為測得氯離子的峰高;
C
為氯離子含量,線性相關系數r =
0.9985,標准曲線有很好的線性
關系,可監測高純去離子水中
10
- 9
mg/L
氯離子。
離子色譜法簡單方便,靈敏
度高,測量快速而准確,且不需
要其他化學試劑,能快速、
簡便、
高效、安全地應用於實際分析,
尤其適用於大批量試劑連續測
定。
2.5
原子吸收法
原子吸收是基於被測物質的
原子蒸氣對特定譜線的吸收作
用來進行定量分析的一種方法。
顧永祚等[19]
以Cl
-
與定量Ag
+

成AgCl
沉澱反應為基礎,提出了
一個測定水中Cl
-
的間接原子吸
收法。Cl
-
濃度在0~50 g/mL
范圍
內呈線性。錢初洪等[20]
用原子吸
收法間接測定了己二酸銨中的
微量氯離子,此法通過加入乙醇
和霧化增效劑,使AgCl
的溶解度
降低並提高了原子化效率,從而
使測定的靈敏度提高,利用
AgNO 3
與己二酸銨中的微量氯離
子反應,測定剩餘Ag
+
間接求出
氯離子的含量,測定的相對標准
偏差1.9%~4.8%,靈敏度(1%A)
為0.022 mg/L。
葉曉萍[21]
利用乙醇-
明膠可
以提高氯化銀沉澱的穩定性,
行業論壇
34
第15

AEO- 7
表面活性劑對銀原子化
效率也有明顯提高的特性,研究
了在一定的介質條件及儀器分
析條件下,通過加入乙醇-
明膠
和AEO- 7,應用石墨爐原子吸收
法測定銀離子含量,從而間接測
定高價稀土氧化物礦物中氯離
子的含量,其線性范圍為20~100
g/L,相關系數r = 0.9997,
RSD
=0.27% ,加標回收率為92.5%
~102.0%。
楊延等[22]
研究了火焰原子吸
收光譜法間接測定電廠高純水
的痕量氯離子的方法。該法採用
AgCl
沉澱,測定剩餘Ag
+
間接求
出氯離子含量。方法的相對標准
偏差2.3%~8.6%,加標回收率為
94% ~103% ,靈敏度(1% A)為
0.029 mg/L。袁志莉等[23]
研究了在
酸性環境中,氯離子與銀離子生
成沉澱,經氨水溶解後,用火焰原
子吸收法測定銀,從而間接測定
出氯離子的含量。本方法測定氯
的線性范圍為1.0~30 g/mL,相關
系數r = 0.999,靈敏度為0.023
g/mL
(1%),檢測下限為0.059
g/mL,回收率為95%~105%。
王傳化[24]
利用原子吸收分光
光度法間接測定了濕法磷酸中
微量氯(0.001%~0.01%)。此法是
用適當過量的Ag
+
與Cl
-
反應,
將生成的沉澱AgCl
過濾後,用原
子吸收分光光度法測定濾液中
剩餘的Ag
+
含量,從而得出濕法
磷酸中氯含量。氯離子的線性范
圍為0.6~1.0 g/mL,加標回收率
為99.5%~101.1%。
原子吸收法具有較高的靈敏
度、
很好的重現性、
較高的准確
度和操作簡單,容易掌握,干擾
少等特點,對微量氯離子的跟蹤
監測是科學准確簡單易行的。
2.6
流動注射法
流動注射分析(Flow Injection
Analysis,
FIA)是一種容易實現現
場與鄰近實驗室聯線的自動分
析系統,廣泛用於環境、
農業、

葯、
臨床、
食品、
冶金、
生物化學
等方面的金屬、
非金屬和有機物
等的分析。
廖霞等[25]
探討了用流動注射
-
雙波長分光光度法測定水樣中
游離氯的最佳化學條件和最佳
儀器參數,選擇參比波長為650
nm,測定波長為553 nm
之處進
行比色測定。
此方法的精度
(RSD)和檢出限分別為1.2%
(10.88 g/mL,
n =11)和0.24
g/mL,用本系統測定水樣中的游
離氯,回收率在100.0%~110.0%
之間,檢測限低,線性范圍寬,重
視性好,可對自來水及漂白粉游
離氯進行實際應用測試。呂淑清
等[26]
根據氯離子與硫氰酸汞和硝
酸鐵在酸性介質中反應生成紅
色絡合物的吸光度與水中氯離
子的含量成正比這一反應原理,
建立了用流動注射-
分光光度
法測定微量氯離子的自動分析
方法。本方法的檢測極限為20
g/L,相對標准偏差為0.89%,回
收率為100%~105%,分析速度為
60~120
樣/h,適用於火電廠爐水
中微量氯離子的測定。
王建偉等[27]
以可編程邏輯控
制器來控制系統以實現自動操
作,測定頻率達80
次/h,建立了
一種應用流動注射連續快速監
測飲用水中余氯的方法。此方法
的檢測下限為0.1 mg/L,線性范
圍0.1~1.6 mg/L,相關系數為
0.9980。
FIA
技術具有裝置小型簡
單,操作可靠,自動化程度高,分
析速度快,分析結果重現性良
好,所需試劑量少,靈敏度高,檢
測下限低等優點,可與比濁法、
速差動力學分析等多種分析方
法聯用且效果更佳,具有良好的
應用前景。
2.7
容量法
容量法[28]
測定生活飲用水中
的氯離子,有硝酸銀容量法(A)
和硝酸汞容量法(B)。A
法為沉
淀滴定法,終點變色不敏銳,易
受氯化銀沉澱顏色的干擾,需以
對比法判定終點,帶有很大的經
驗性。B
法的終點變色很敏銳,易
於判斷,但要嚴格控制試液的pH
值在3.0±0.2
的范圍內。若水樣
氯離子含量超過100 mg/L
時,須
稀釋樣品。
張艷[29]
確定了二苯卡巴腙
(DPCO)和二苯碳醯二肼(DPCI)
兩種指示劑、
不同酸度對測定結
果的影響,並不經稀釋直接測定
了高濃度的樣品,測量結果得A
法的回收率為102.2%~101.0%,
RSD<0.016;
B
法的回收率為
100.2%~100.5%,
RSD<0.009。硝
酸汞容量法測定飲用水中的氯
離子,方法簡便,終點變色敏銳,
其准確度和精密度均優於硝酸
銀容量法,由於水樣具有一定的
緩沖能力,對於含量高的樣品,
只需將試液滴定前的pH
值控制
在3.2,樣品不需稀釋可以直接
俞凌雲,等:氯離子測定方法及其應用研究行業論壇
35
西部皮革第31

測定。B
法的適應濃度范圍廣,准
確度、
精密度均優於A
法。其原
因主要是A
法的終點顏色由黃
色變為磚紅色,變色不明顯,需
以對比法進行終點判定。而B

的終點顏色是由微黃色變為淡
紫色,變色敏銳,易於判定。
陸克平[30]
發現現行硝酸汞容
量法測定安慶分公司煉油污水
中氯離子含量大大偏高和終點
變色遲緩返色等現象。於是改進
了煉油裝置污水的預處理方式,
將樣品經過濾直接加熱揮發、

性條件下雙氧水消解和鹼性條
件下煮沸等過程後,能完全消解
和去除干擾離子,消除該現象,
而且氯離子幾乎無損;汞氯配合
物的平均配位數與試液中氯離
子濃度有關,通過控製取樣量,
使氯離子濃度在平均配位數近
似為2
的可准確測定范圍。改進
後的硝酸汞容量法單次試驗分
析周期為40 min,可准確測定至
0.35 mg/L
的氯離子,氯離子回收
率為98.0%~102.4%。
3
其他分析方法
陳建欣[31]
用電化學分析法測
定工業亞磷酸中氯離子含量,應
選擇測定環境無氯氣存在,參比
電極採用217
型雙鹽橋飽和甘
汞電極,若用新銀電極要先用乙
醇擦洗,用蒸餾水泡24 h,然後
用0.001 mol/L
的AgNO 3
溶液浸
泡20~30 min
將電極活化,用
0.1000 mol/L
的AgNO 3
標准溶
液,試樣質量10 g
左右為宜,本
方法適用於可溶性氯化物的測
定,測定最低值可低至0.0001%。
魏紅兵等[32]
研究了用自動電
位滴定法測定化肥中氯離子含
量的方法。本方法是先將樣品溶
解後加3
倍溶液體積量的乙醇,
然後用硝酸銀標准溶液通過自
動電位滴定儀進行等當點滴定。
氯離子的檢出下限為0.006,回
收率為98.6%~102.0%。
邵海青[34]
研究了以銀電極作指示電極,
217
型甘汞電極作參比電極,在
經冷藏後的銅電解液中加入過
量的硝酸銀標准溶液,以氯化鉀
標准溶液電位返滴定測定氯離
子含量。
測得回收率在95%
~100%范圍內,
RSD=2.8%。電位
滴定法簡捷方便,測量准確,工
作效率高。
4
展望
在各種氯離子分析方法中,
以離子色譜法最為簡便快速與
通用,而硝酸銀容量法和硝酸汞
容量法因不需要特殊的儀器及
器皿簡單,在廢水的氯離子含量
測定中最為普及。雖然汞量法需
用到有毒試劑,但較銀量法溶液
穩定性好、
可消除殘硫酸根及低
pH
條件下滴定可減少干擾。但
兩種容量法都存在靈敏度低、

現性差、
誤差大等缺點。分光光
度法以其靈敏度高,選擇性好,
操作簡單等優點廣泛用於各種
微量以及痕量組分的分析。濁度
法快捷簡便且運行成本低,易實
現自動化,在分析科學中有廣泛
的應用。離子色譜法雖然檢測下
限很低,但操作復雜,儀器昂貴,
不適宜於實際生產的應用。原子
吸收法是一種十分成熟的痕量
分析技術,操作簡便、
儀器普及、
重現性好、
有較高的靈敏度和選
擇性,因此在稀土工業生產及分
析研究工作中得到廣泛的應用。
流動注射有檢測限低,線性范圍
寬,重視性好,可與多種分析方
法聯用,以此建立起來的痕量氯
離子濃度自動測定方法,更適合
於發電廠、
化工廠等生產運行中
各種水或中間反應過程中的氯
離子濃度的實時、在線自動監
測。
參考文獻:
[1]但衛華.製革化學及工藝學[M].北京:
中國輕工業出版社,
2006.
[2]周少玲,張永.各種氯離子含量測定方
法的適用性探討及新方法的提出[J].
熱力發電,
2007,
37
(7):
75-76.
[3]周強,李萍,曹金花,等.測定植物體內
氯離子含量的滴定法和分光光度法
比較[J].
植物生理學通訊,
2007,
43
(6):
1163-1166.
[4]楊學芬.分光光度法測定工業亞磷酸
中的氯離子[J].
雲南化工,
2000,
27
(4):
15-16.
[5]關瑞,李昌,宋維.分光光度法測定微
量氯離子的研究與應用[J].化工標准
化與質量監督,
2000,(3):
7-9.
[6]顧立公.硫氰酸汞-硝酸鐵間接法測
定水中微量氯離子[J].江蘇衛生保健,
2005,
7
(1):
18.
[7]GB/T 6905.4—1993,鍋爐用水和冷卻
水分析方法—— —氯化物的測定:共沉
淀富集分光光度法[S].
[8]陳振華,泉香芹.濁度法測定發電廠爐
水中微量氯離子的研究[J].華北電力
技術,
2003,(2):
7-8.
[9]
王愛榮,楊波,胡小保.比濁法測定酸
性鍍銅液中微量氯離子[J].廣東微量
元素科學,
2007,
14
(3):
45-47.
(下轉第42
頁)
西部皮革行業論壇
36
西部皮革第31

(上接第36
頁)
[10]杜斌,王淑仁,魏琴.非離子型微乳液
介質-氯化銀濁度法測定氯離子[J].
分析化學,
1995,
23
(5):
612.
[11]申海燕.水中微量氯離子的微型測定
[J].長沙鐵道學院學報,
2003,
21(4):
87-88.
[12]王兆喜,汪敬武.反相流動注射比濁
法測定水中氯離子[J].
南昌大學學
報,
2003,
27
(3):
248-251.
[13]張新申,鄭筱梅,陳子陽.離子色譜法
測定氯離子含量[J].
皮革科技,
1993,
18
(9):
14-16.
[14]朱子平.離子色譜法測定乳化液中的
氯離子[J].分析儀器,
2003,(4):
32-
34.
[15]陸克平,劉心烈.離子色譜法測定雙
氧水中微量氯離子[J].
化肥工業,
2002,
29
(6):
39-40.
[16]王艷麗,伯英,劉燕,等.離子色譜法
測量硝酸中痕量的氯離子(I)[J].化
學工程師,
2006,(2):
42-43.
[17]劉燕,侯倩慧,余季金,等.離子色譜
雙柱法測定硝酸中痕量氯離子[J].化
學分析計量,
2006,
15
(2):
40-41.
[18]宋曉年,王瑾.離子色譜法測定高純
度水中痕量氯離子[J].
宇航材料工
藝,
1996,(5):
55-56.
[19]顧永祚,楊洪高,潘楊,等.間接原子
吸收法測定水中氯化物研究[J].四川
環境,
1994,
13
(1):
23-25.
[20]錢初洪,梁巧榮,黃志明.用原子吸收
法間接測定已二酸銨中的微量氯離
子[J].應用化工,
2003,
32
(3):
39-41.
[21]葉曉萍.原子吸收法間接測定高價稀
土氧化物[J].稀土,
2006,
27(2):
53-
56.
[22]楊延,薛來,劉來昌.用原子吸收法間
接測定電廠水中的痕量氯離子[J].上
海電力學院學報,
2000,
16
(1):
8-12.
[23]袁志莉,孫建民,高崢,等.火焰原子
吸收法間接測定二氧化硅中的氯[J].
分析科學學報,
2006,
22
(1):
115-
116.
[23]王傳化.原子吸收分光光度法間接測
定濕法磷酸中的微量氯[J].磷肥與復
肥,
2006,
21
(4):
73-74.
[25]廖霞,肖仁貴,趙中一.流動注射-雙
波長分光光度法測定水樣中的游
離氯[J].
貴州化工,
1998,(3):
32-
34.
[26]李永生,董宜玲,呂淑清.爐水中微量
氯離子的流動注射分光光度測定法
[J].華東電力,
2003
(7):
70-74.
[27]王建偉,洪陵成.飲用水中余氯的反
相流動注射分析[J].儀器儀表與分析
監測,
2006
(1):
33-34.
[28]GB 5749—2006,生活飲用水衛生標
准[S].
[29]張艷.硝酸汞容量法測定氯化物[J].
中國公共衛生,
2004,
20
(3):
349.
[30]陸克平.汞量法測定煉廠含硫污水中
氯離子的改進[J].
檢驗檢測,
2008
(9):
24-27.
[31]陳建欣.電化學分析法測定工業亞磷
酸中氯離子的含量[J].井岡山醫專學
報,
2007.14
(4):
43-44.
[32]魏紅兵,李權斌,王向東.自動電位滴
定法測定化肥中氯離子含量[J].磷肥
與復肥,
2005,
20
(2):
67-68.
[33]邵海青.電位滴定法測定銅電解液中
氯離子[J]. 治金分析,
2001,
21(4):
65.
部分:需從纖維中萃取的偶氮染料測
定[S].
[8]鵬搏.禁用偶氮染料檢測技術進展[J].
上海化工,
1997,
6
(22):
36-39.
[9]崔燕娟,賴勁虎,王志暢.淺析生態紡
織品中禁用偶氮染料的檢測技術[J].
化工時刊,
2008,
22
(4):
76-77.
[10]GB 20400-2006.皮革和毛皮有害物
質限量[S].
[11]GB 19601-2004.
染料產品中23

有害芳香胺的限量及測定[S].
[12]GB/T 19442-2005.
皮革和毛皮化學
試驗禁用偶氮染料的測定[S].
[13]SN/T 1045.1.
染色紡織品和皮革制
品中禁用偶氮染料的檢測方法液相
色譜法[S].
[14]SN/T 1045.2.染色紡織品和皮革製品
中禁用偶氮染料的檢測方法氣相色
譜/質譜法[S].
[15]SN/T 1045.3.染色紡織品和皮革製品
中禁用偶氮染料的檢測方法氣相色
譜法[S].
[16]DIN 53316:
1997.皮革檢驗皮革某些
偶氮染料的測定[S].
[17]§35 LMBG 82.02-2.日用品分析紡織
日用品上使用某些偶氮染料的檢測
[S].
[18]§35 LMBG 82.02-3.日用品測試皮革
上禁用偶氮染料的檢測[S].
[19]§35 LMBG 82.02-4.日用品分析聚酯
纖維上使用某些偶氮染料的檢測[S].
[20]§64 LFBG 82.02-9.日用品研究可排
放4-氨基偶氮苯的偶氮染料之使用
驗證[S].
[21]ISO/TS 17234:
2003.
皮革化學測試
皮革中某些偶氮染料的測定[S].
[22]姜遜,張玉蓮,汪福坤.禁用偶氮染料
檢測現狀與發展建議[J].上海紡織科
技,
2008,
36
(1):
52-53.
[23]朱少萍,顧麗娟.禁用偶氮染料檢測
中假陽性結果的鑒別方法[J].科技信
息,
2007,(11):
85,
87.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
西部皮革行業論壇
42

㈡ 廢水氯離子的檢測方法

「氯離子的數量在25-50之間」是指百分含量?
量取或稱取(如果是求物質的量濃度用量取,專求質量屬分數用稱取)一定量的廢水,先往廢水中滴加硝酸,若有沉澱或氣體生成,則繼續滴加到無沉澱和氣體生成,若有沉澱生成,則過濾。再往溶液里滴入過量的硝酸銀直到無沉澱生成。過濾。烘乾所得沉澱,測得沉澱質量即AgCl的質量,進而可以求出所取廢水中所含的氯元素的質量和物質的量,也即氯離子的質量和物質的量。

㈢ 求教下染整企業排的廢水,用什麼方法檢測COD最好

根據《水和廢水監測分析方法》(第四版),重酪酸鉀法是標準的COD測定方法之一,其准確性受人為影響較大,滴定不準確、標准液配置的不標准等等,都會影響檢測的結果。
水中COD 的檢測方法
1 主題內容與適用范圍
本標准規定了水中化學需氧量的測定方法。
本標准適用於各種類型的含COD值大於30mg/L的水樣,對未經稀釋的水樣的測定上限為700mg/L。
本標准適用於含氯化物濃度大於1000mg/L(稀釋後)的含鹽水。
2 定義
在一定條件下,經重鉻酸鉀氧化處理時,水樣中的溶解性物質和懸浮物所消耗的重鉻酸鹽相對應的氧的質量濃度。
3 原理
在水樣中加入已知量的重鉻酸鉀溶液,並在強酸介質下以銀鹽作催化劑,經沸騰迴流後,以試亞鐵靈為指示劑,用硫酸亞鐵銨滴定水樣中未被還原的重鉻酸鉀由消耗的硫酸亞鐵銨的量換算成消耗氧的質量濃度。
在酸性重鉻酸鉀條件下,芳烴及啉啶難以被氧化,其氧化率較低。在硫酸銀催化作用下,直鏈脂肪族化合物可有效地被氧化。
4 試劑
除另有說明,實驗時所用試劑均為符合國家標準的分析純試劑,實驗用水均為蒸餾水或具有同等純度的水。
4.1 硫酸銀,化學純;
4.2 硫酸汞,化學純;
4.3 硫酸,ρ=1.84g/mL;
4.4 硫酸銀—硫酸試劑:向1L硫酸(4.3)中加入10g硫酸銀(4.1),放置1~2天使之溶解,並混勻,使用前小心搖動。
4.5 重鉻酸鉀標准溶液
QJ/XH 05031—2002
4.5.1 濃度為C(1/6K2Cr2O7)= 0.250mol/L的重鉻酸鉀標准溶液:將12.258g在105℃乾燥2h後的重鉻酸鉀溶於水中,稀釋至1 000mL。
4.5.2 濃度為C(1/6K2Cr2O7)= 0.0250mol/L的重鉻酸鉀標准溶液:將4.5.1條的溶液稀釋10倍而成。
4.6 硫酸亞鐵銨標准滴定溶液
4.6.1 濃度為C[(NH4)2Fe(SO4)2•6H2O] ≈ 0.10mol/L的硫酸亞鐵銨標准滴定溶液:溶解39g硫酸亞鐵銨[(NH4)2Fe(SO4)2•6H2O]於水中,加入20mL硫酸(4.3),待其溶解冷卻後,稀釋至1000mL。
4.6.2 每次臨用前,必須用重鉻酸鉀標准溶液(4.5.1)准確標定此溶液(4.6.1)的濃度。
取10.00mL重鉻酸鉀標准溶液(4.5.1)置於錐形瓶中,用水稀釋至約100mL,加入30mL硫酸(4.3),混勻,冷卻後,加3滴(約0.15mL)試亞鐵靈指示劑(4.8),用硫酸亞鐵銨(4.6.1)滴定溶液的顏色由黃色經藍綠色變為紅褐色,即為終點。記錄下硫酸亞鐵銨的消耗量(mL)。
4.6.3 硫酸亞鐵銨標准滴定溶液濃度的計算:
10.00×0.250 2.50
C = ——————— = ————
V V
式中:V — 滴定時消耗硫酸亞鐵銨溶液的mL數。
4.6.4 濃度為C[(NH4)2Fe(SO4)2•6H2O]≈ 0.010mol/L的硫酸亞鐵銨標准滴定溶液:將4.6.1條的溶液稀釋10倍,用重鉻酸鉀標准溶液(4.5.2)標定,其滴定步驟及濃度計算分別與4.6.2及4.6.3類同。
4.7 鄰苯二甲酸氫鉀標准溶液,C[KC6H5O4]=2.0824 m mol/L:稱取105℃時乾燥2h的鄰苯二甲酸氫鉀0.4251g溶於水,並稀釋至1000mL,混勻。以重鉻酸鉀為氧化劑,將鄰苯二甲酸氫鉀完全氧化的COD值為1.176g氧/克(指1g鄰苯二甲酸氫鉀耗氧1.176g)故該標准溶液的理論COD值為500mg/L。
4.8 1,10—菲繞啉(1,10—phenanathroline monohy drate)指示劑溶液:溶解0.7g七水合硫酸亞鐵於50mL的水中,加入1.5g1,10—菲繞啉,攪動至溶解,加水稀釋至100mL。
4.9 防爆沸玻璃珠。
5 儀器

常用實驗室儀器和下列儀器。
5.1 迴流裝置:帶有24號標准磨口的250mL錐形瓶的全玻璃迴流裝置。迴流冷凝管長度為300~500mm。若取樣量在30mL以上,可採用帶500mL錐形瓶的全玻璃迴流裝置。
5.2 加熱裝置。
5.3 25mL或50mL酸性滴定管。
6 采樣和樣品
QJ/XH 05031—2002
6.1 采樣
水樣要採集於玻璃瓶中,應盡快分析。如不能立即分析時,應加入硫酸(4.3)至pH<2,置4℃下保存。但保存時間不多於5天。採集水樣的體積不得少於100mL。
6.2 試料的准備
將試樣充分搖勻,取出20.0mL作為試料。
7 步驟
7.1 對於COD小於50mg/L的水樣,應採用低濃度的重鉻酸鉀標准溶液(4.5.2)氧化,加熱迴流以後,採用低濃度的硫酸亞鐵銨標准溶液(4.6.4)回滴。
7.2 該方法對未經稀釋的水樣其測定上限為700mg/L,超過此限時必須經稀釋後測定。
7.3 對於污染嚴重的水樣,可選取所需體積1/10的試料和1/10的試劑,放入10×150mm的硬質玻璃管中,搖勻後,用酒精燈加熱至沸數分鍾,觀察溶液是否變成藍綠色。如呈現藍綠色,應再適當少取試料,重復以上試驗,直至溶液不變藍綠色為止。從而確定待測水樣適當的稀釋倍數。
7.4 取試料(7.2)於錐形瓶中,或取適量試料加水至20.0mL。
7.5 空白試驗:按相同步驟以20.0mL水代替試料進行空白試驗,其餘試劑和試料測定(7.8)相同,記錄下空白滴定時消耗硫酸亞鐵銨標准溶液的毫升數V1。
7.6 校核試驗:按測定試料(7.8)提供的方法分析20.0mL鄰苯二甲酸氫鉀標准溶液(4.7)的COD值,用以檢驗操作技術及試劑純度。
該溶液的理論COD值為500mg/L,如果校核試驗的結果大於該值的96%,即可認為實驗步驟基本上是適宜的,否則,必須尋找失敗的原因,重復實驗,使之達到要求。
7.7 去干擾試驗:無機還原性物質如亞硝酸鹽、硫化物及二價鐵鹽將使結果增加,將其需氧量作為水樣COD值的一部分是可以接受的。
該實驗的主要干擾物為氯化物,可加入硫酸汞(4.2)部分地除去,經迴流後,氯離子可與硫酸鋇結合成可溶性的氯汞絡合物。
當氯離子的含量超過1000mg/L時,COD的最低允許值為250 mg/L,低於此值結果的准確度就不可先靠。
7.8 水樣的測定:於試料(7.4)中加入10.0mL重鉻酸鉀標准溶液(4.5.1)和幾滴防爆沸玻璃珠(4.9),搖勻。
將錐形瓶接到迴流裝置(6.1)冷凝管下端,接通冷凝水。從冷凝管上端緩慢加入30mL硫酸銀—硫酸試劑(4.4),以防止低沸點有機物的逸出,不斷旋動錐形瓶使之混合均勻。自
溶液開始沸騰起迴流兩小時。
冷卻後,用20~30mL水自冷凝管上端沖洗冷凝管後,取下錐形瓶,再用水稀釋至140 mL左右。
溶液冷卻至室溫後,加入3滴1,10—菲繞啉指示劑溶液(4.8),用硫酸亞鐵銨標准滴定溶液(4.6)滴定,溶液的顏色由黃色經藍綠色變為紅褐色即為終點。記下硫酸亞鐵銨標准滴定溶液的消耗毫升數V2。
QJ/XH 05031—2002
7.9 在特殊情況下,需要測定的試料在10.0mL到50.0mL之間,試劑的體積或重量要按表1作相應的調整。
表1 不同取樣量採用的試劑用量
樣品量mL 0.250mol/LK2Cr2O7mL Ag2SO4—H2SO4mL HgSO4G (NH4)2Fe(SO4)2•6H2Omol/L 滴定前體積mL
10.0 5.0 15 0.2 0.05 70
20.0 10.0 30 0.4 0.10 140
30.0 15.0 45 0.6 0.15 210
40.0 20.0 60 0.8 0.20 200
50.0 25.0 75 1.0 0.25 350
8 結果的表示
8.1 計算方法
以mg/L計的水樣化學需氧量,計算公式如下:
(V1 – V2)C×8000
COD(mg/L)= ———————————
V0
式中:C — 硫酸亞鐵銨標准滴定溶液(4.6)的濃度,mol/L;
V1 — 空白試驗 (7.4) 所消耗的硫酸亞鐵銨標准滴定溶液的體積,mL;
V2 — 試料測定(7.8)所消耗的硫酸亞鐵銨標准滴定溶液的體積,mL;
V0 — 試料的體積,mL;
8000 — 1/4 O2的摩爾質量以mg/L為單位的換算值。
確定結果一般保留三位有效數字,對COD值小的水樣(7.1),當計算出COD值小於10mg/L時,應表示為「COD<10mg/L」。
8.2 精密度
8.2.1 標准溶液測定的精密度
40個不同的實驗室測定COD值為500 mg/L的鄰苯二甲酸氫鉀(4.7)標准溶液,其標准偏差為20 mg/L,相對標准偏差為4.0%。

㈣ 酸性廢水中氯離子,鈉離子的檢測方法急需!

氯離子的復檢驗可以制這樣來:由於溶液呈酸性,先加入硝酸銀溶液(如果溶液本來不是酸性,需要加入稀硝酸酸化),有白色沉澱生成,該白色沉澱溶於氨水(形成銀氨的絡合物,而當向絡合物中加入硝酸時,又有白色沉澱生成)
至於鈉離子,常用的方法是焰色反應,觀察時要透過藍色的鈷玻璃

㈤ 請問一下測定廢水氯離子的最佳方法

1 范圍
本方法規定了水中氯化物濃度的硝酸銀滴定法。
本方法適用於天然水中氯化物的測定也適用於經過適當稀釋的高礦化度水如鹹水海水等以及經過預處理除去干擾物的生活污水或工業廢水。
本方法適用的濃度范圍為10-500mg/L的氯化物高於此范圍的水樣經稀釋後可以擴大其測定范圍。
溴化物碘化物和氰化物能與氯化物一起被滴定正磷酸鹽及聚磷酸鹽分別超過250mg/L及25mg/L時有干擾鐵含量超過10mg/L時使終點不明顯。
2 原理
在中性至弱鹼性范圍內(pH6.5-10.5)。以鉻酸鉀為指示劑用硝酸銀滴定氯化物時,由於氯化銀的溶解度小於鉻酸銀的溶解度,氯離子首先被完全沉澱出來後,然後鉻酸鹽以鉻酸銀的形式被沉澱,產生磚紅色,指示滴定終點到達。該沉澱滴定的反應如下:
Ag+ + Cl- →AgCl
2Ag+ + CrO42- →Ag2CrO4 (磚紅色)
3 試劑
分析中僅使用分析純試劑及蒸餾水或去離子水
3.1 高錳酸鉀c (1/5KMnO4) 0.01mol/L
3.2 過氧化氫(H2O2) 30%
3.3 乙醇(C2H5OH) 95%
3.4 硫酸溶液c 1/2 H2SO4 =0.05mol/L
3.5 氫氧化鈉溶液c NaOH =0.05mol/L
3.6 氫氧化鋁懸浮液溶解125g 硫酸鋁鉀[KAl(SO4)2 12H2O]於1L 蒸餾水中加熱至60℃,然後邊攪拌邊緩緩加入55mL濃氨水放置約1h後, 移至大瓶中用傾瀉法反復洗滌沉澱物,直到洗出液不含氯離子為止用水稀至約為300mL。
3.7 氯化鈉標准溶液0.0141mol/L 相當於500mL/L 氯化物含量將氯化鈉(NaCl)置於瓷坩堝內在500~600 下灼燒40~50min 在乾燥器中冷卻後稱取8.2400g 溶於蒸餾水中在容量瓶中稀釋至1000mL用吸管吸取10.0mL, 在容量瓶中准確稀釋至100mL。
1.00mL 此標准溶液含0.50mg 氯化物(Cl-)。
3.8 硝酸銀標准溶液0.0141mol/L 稱取2.3950g 於105 烘半小時的硝酸銀(AgNO3) 溶於蒸餾水中在容量瓶中稀釋至1000mL貯於棕色瓶中用氯化鈉標准溶液(3.7)標定其濃度。
用吸管准確吸取25.00mL氯化鈉標准溶液(3.7)於250mL錐形瓶中加蒸餾水25mL另取一錐形瓶量取蒸餾水50mL作空白,各加入1mL鉻酸鉀溶液(3.9)在不斷的搖動下用硝酸銀標准溶液滴定至磚紅色沉澱剛剛出現為終點。計算每毫升硝酸銀溶液所相當的氯化物量,然後校正其濃度再作最後標定。
1.00mL此標准溶液相當於0.50mg氯化物(Cl-)
3.9 鉻酸鉀溶液50g/L:稱取5g鉻酸鉀(K2CrO4)溶於少量蒸餾水中滴加硝酸銀溶液(3.8)至有紅色沉澱生成,搖勻靜置12h然後過濾並用蒸餾水將濾液稀釋至100mL。
3.10 酚酞指示劑溶液稱取0.5g 酚酞溶於50mL95 乙醇(3.3)中加入50mL 蒸餾水再滴
加0.05mol/L 氫氧化鈉溶液(3.5)使呈微紅色。
4 儀器
4.1 錐形瓶250mL
4.2 滴定管25mL 棕色
4.3 吸管50mL 25mL
5 試樣制備
採集代表性水樣放在干凈且化學性質穩定的玻璃瓶或聚乙烯瓶內保存時不必加入特別的防腐劑。
6 操作步驟
6.1 干擾的排除
若無以下各種干擾此節可省去
6.1.1 如水樣渾濁及帶有顏色則取150mL或取適量水樣稀釋至150mL置於250mL錐形瓶中,加入2mL氫氧化鋁懸浮液(3.6)振盪過濾棄去最初濾下的20mL,用乾的清潔錐形瓶接取濾液備用。
6.1.2 如果有機物含量高或色度高可用茂福爐灰化法預先處理水樣取適量廢水樣於瓷蒸發皿中調節pH值至8~9置水浴上蒸干然後放入茂福爐中在600下灼燒1h取出冷卻後加10mL蒸餾水移入250mL 錐形瓶中並用蒸餾水清洗三次一並轉入錐形瓶中調節pH值到7左右稀釋至50mL。
6.1.3 由有機質而產生的較輕色度可以加入0.01mol/L 高錳酸鉀(3.1)2mL煮沸再滴加乙醇(3.3) 以除去多餘的高錳酸鉀至水樣退色過濾濾液貯於錐形瓶中備用。
6.1.4 如果水樣中含有硫化物亞硫酸鹽或硫代硫酸鹽則加氫氧化鈉溶液(3.5)將水樣調至中性或弱鹼性加入1mL30 過氧化氫(3.2) 搖勻一分鍾後加熱至70~80 以除去過量的過氧化氫。
6.2 測定
6.2.1 用吸管吸取50mL 水樣或經過預處理的水樣(若氯化物含量高可取適量水樣用蒸餾水稀釋至50mL) 置於錐形瓶中另取一錐形瓶加入50mL蒸餾水作空白試驗。
6.2.2 如水樣pH 值在6.5~10.5范圍時可直接滴定超出此范圍的水樣應以酚酞作指示劑。
用稀硫酸(3.4)或氫氧化鈉的溶液(3.5)調節至紅色剛剛退去。
6.2.3 加入1mL鉻酸鉀(3.9)溶液1 用硝酸銀標准溶液(3.8)滴定至磚紅色沉澱剛剛出現即為滴定終點。
同法作空白滴定。

㈥ 印染廢水中氯離子怎麼測定

1、滴定法:碘量法——HZ-HJ-SZ-0149
如果需要我將PDF版本發給你
2、用余氯測試試紙;
3、用余氯測試儀。

㈦ 怎樣較准確地測定高鹽廢水的COD值

硫酸汞的確可以掩蔽一定濃度的氯離子(<1000mg/L),但是當原水中的氯離子含量過高,提高硫酸汞測專定屬的COD也是不準確的。
根據相關文獻了解,壓裂返排液的COD波動較大(2000~10,000mg/L)。參考《水和廢水監測分析方法(第四版)》,可先稀釋原水,將氯離子含量控制在1000mg/L以內。預估稀釋後的COD,如果大於50mg/L,選用0.25mol/L的重鉻酸鉀溶液,在5~50之間,可以選用0.025mol/L的重鉻酸鉀溶液。當然硫酸汞作為掩蔽劑在操作流程中仍然是需要加入的。

註:由於不清楚鹽含量30g/L中NaCl的佔比,假定全部是NaCl,理論上稀釋20倍可以將氯離子含量控制在1000mg/L以內。題主可以先試試稀釋法。

㈧ 滴定法怎麼測污水COD呀

COD標准測定法

(1) 取20.00mL混合均勻的水樣(或適量水樣稀釋至20.00mL)置250mL磨口的迴流錐形瓶,准確加入10.00ml 0.25mol/L重鉻酸鉀標准溶液及數粒洗凈的玻璃珠或沸石,連接磨口迴流冷凝管,從冷凝管上口慢慢地加入30 ml硫酸--硫酸銀溶液,輕輕搖動錐形瓶使溶液混勻,加熱迴流2小時(自開始沸騰時計時)。

(2) 冷卻後,用90mL水從上部慢慢沖洗冷凝管壁,取下錐形瓶。溶液總體積不得少於140mL,否則因酸度太大,滴定終點不明顯。

(3) 溶液再度冷卻或,加三滴試亞鐵靈指示劑,用硫酸亞鐵銨標准溶液滴定,溶液的顏色由黃色經藍綠色至紅褐色即為終點,記錄硫酸亞鐵銨標准溶液的用量。

(4) 測定水樣的同時,以20.00mL蒸餾水,按同樣操作步驟作空白試驗。記錄滴定空白時硫酸亞鐵銨標准溶液的用量。

註:測定范圍為50mg/L——700mg/L。

缺點:

1、 耗時太多,每測定一個樣需迴流2個小時;
2、 迴流設備佔用的空間大,使批量測定出現困難;
3、 分析費用較高,特別是硫酸銀(500.00元/百克);
4、 迴流水的浪費;
5、 毒性的汞鹽易造成二次污染。

二對重鉻酸鉀法測COD的改進

在一定比例的硫磷混合酸組成的強酸性溶液中,用重鉻酸鉀將水樣中的還原性物質(主要是有機物)氧化,過量的重鉻酸鉀溶液以試亞鐵靈作指示劑,用硫酸亞鐵銨溶液回滴。根據所消耗的重鉻酸鉀量算出水樣中的化學需氧量,以每升水樣中氧的毫克數表示。
說法1:
步驟同標准方法:
取20 .00ml廢水(或適量廢水稀釋至20 .00ml)搖勻置於250ml磨口的迴流錐形瓶中,加入10.00ml重鉻酸鉀標准溶液及2-3粒小玻璃珠或者沸石,連接磨口迴流冷凝管,從冷凝管上口慢慢加入30ml硫磷混合酸,輕輕搖動錐形瓶使溶液混勻,加熱迴流12分鍾(自開始沸騰時計時)。但對於有氯離子的廢水,則應先把0. 4克硫酸汞加入迴流錐形瓶中後(以下操作同上)。本方法採用硫磷混合酸代替硫酸—硫酸銀溶液,極大地縮短了迴流時間。
本快速法與標准法相比,極大地縮短了迴流時間,提高了分析速度,節省了水電及試劑,大大降低了分析成本。且檢驗結果准確可靠,能很好地滿足應急監測的需要。
說法2:CuSO4-(KAl(SO)4-Na2MoO4代替Ag2SO4作催化劑,AgNO3-CrK(SO4)2代替Hg2SO4消除CI-干擾,在H2SO4-H3PO4(3:1)(V%下同)體系中加熱迴流0.5h。
按實驗方法改變混酸中硫酸與磷酸的體積比表明:當H2SO4∶H3PO4=3∶1時(體積比,下同)回收率最高.當混酸配比小於3∶1時,由於硫酸用量減少,K2Cr2O7的氧化能力降低,回收率低,混酸配比大於3∶1時回收率趨於穩定,但磷酸用量減少對污染物的凝聚作用減弱,使回收率稍微降低。
本方法與標准法測定結果接近,相對偏差在-4.38%~1.94%之間,能較好地滿足分析測試要求。
在H2SO4-H3PO4混酸介質中,CuSO4-KAl(SO4)2-Na2MoO4,對重鉻酸鉀氧化廢水中還原性物質有較強的催化作用,與標准法相比准確度和精密度較好。
本方法的最大優點是加熱迴流時間由標准法的2h縮短到0.5h,並擴大水樣CODcr測定范圍。
其次,用AgNO3-CrK(SO4)2代替Hg2SO4作為CI-干擾的消除劑,避免了汞污染,具有較好的環境效應。

三、自熱法快速測定COD
用加大硫酸用量,依靠水與濃硫酸混合放出的熱量而升高溫度,無需外加熱量,因此能同時快速測定多個水樣
說法1:
實驗原理:硫酸溶解於水為劇烈的放熱反應。如在10ml水中加入14.9ml濃H2SO4,此時溶液的溶解熱[4]為:
H°sn=41.91kJ/kmolH2SO4;
稀釋熱總計為:Q=41.91×14.9×1.84/98=11.65kj
若忽略熱損失,溶液溫升△t為:△t=Q/mcp=11.65/[(14.79×1.84+10.0×1.0)×10-3×2.09]=149.7℃
若室溫20℃,則溶液最終溫度可達169.7℃,在此溫度及強酸性條件下,硫酸溶解於水的稀釋熱足夠提供氧化消解反應所需的熱量,故無需外加熱量。
測定主要因素有:原始水樣COD及取樣量、K2Cr2O7用量、H2SO4加入量及HgSO4用量。為確定最佳試驗條件,採用正交法,因素水平如表:
試驗因素
水平 水樣量(ml) K2Cr2O7(ml) H2SO4(ml) HgSO4(g)
1 1 2.5 7.5 0.1
2 2 5 15 0.2
3 5 10 20 0.3

說法2:從混合液溫度和氧化劑條件電極電勢兩方面計算得到最佳的硫酸與水樣的體積比為1.34。
在無外加熱COD快速測定中,體系酸度是關鍵因素,它既決定了反應溫度,又決定了氧化劑的氧化能力。因此,為了使廢水有機物氧化快速、完全,必須確定最佳的加酸量,在此硫酸濃度下,水樣可以達到的溫度最高,氧化劑的條件電極電勢最高。
當濃硫酸與水樣體積之比Cv為1.34時,混合後溶液的終溫最高,理論最高溫度為165.2℃;此後再提高酸度,溶液終溫將下降。當此比值為1.0時,即投加的濃硫酸體積與水樣體積相等(同標准法酸度)時,溶液終溫為161.9℃;在Cv為1~2的范圍內,溶液終溫都在160℃以上。

四、微波密封消解快速測定儀
採用硫酸和重鉻酸鉀消解體系,水樣經微波爐加熱消解後,過量的重鉻酸鉀以試亞鐵靈為指示劑,用硫酸亞鐵銨進行滴定,計算出COD值。
1) 主要儀器與試劑
① 微波消解爐、聚四氟乙稀消解罐;
②含Hg2+消解液:稱取經120℃烘乾2h的基準或純重鉻酸鉀9.806g,溶於600mL水中,再加入硫酸汞25.0g,邊攪拌邊加入濃硫酸250mL,冷卻後,移入1000mL容量瓶中,並稀釋至刻度搖勻,該溶液重鉻酸鉀濃度為0.2000mol/L。適用於氯離子濃度大於100mg/L水樣,最高可絡合2000mg/L氯離子濃度,水樣中氯離子濃度過高可適當稀釋。
③無Hg2+消解液:除了不用加入硫酸汞外,其他同②配製方法.適用於測定氯離子濃度小於100mg/L的水樣.④試亞鐵靈指示劑、硫酸亞鐵銨標准溶液、硫酸—硫酸銀催化劑、硫酸汞.
2)實驗方法
①用直吹式移液管取水樣5.00mL於消解罐中,准確加入5.00mL消解液和5.0mL催化劑,搖勻.在分析含Cl-水樣時,罐內加入水樣和含Hg2+消解液後,及時搖勻(約1min)使Cl-與Hg2+充分反應後,再加催化劑。
②旋緊密封蓋,將罐均勻置放入消解爐玻璃盤上,離轉盤邊沿約2cm圓周上單圈排好。
② 樣品消解時間取決於轉盤上放置的消解罐數目。
3)該方法的優缺點比較
①該方法僅需水樣、消解液、催化劑各5.00mL,試劑用量減少,消解時間由2h縮短到幾min,不僅節省分析費用,且大大提高了工作效率,操作亦簡便安全。
②精密度:樣品1、2測定結果,相對標准偏差分別為和0.58%~1.50%,遠小於標准法規定的≤4.3%。
③准確度:某對標樣進行測定,五個平行標樣相對誤差為1.14%,測試合格。

五、HH—1型化學耗氧量快速測定儀等等
HH—1型化學耗氧量測定儀(江蘇電分析儀器廠)迴流裝置,34#標准磨口150ml錐形瓶,120mm球形冷凝管0.05/6mol/L重鉻酸鉀溶液硫酸———硫酸銀溶液(6g/500ml)20%硫酸鐵溶液。
庫倉法原理:水樣以重鉻酸鉀為氧化劑,在10.2mol/L硫酸介質中迴流氧化後,過量的重鉻酸鉀用電解產生的亞鐵離子作為庫倉滴定劑進行庫倉滴定,根據電解產生亞鐵離子所消耗的電量,按照法拉第定律直接計算COD值。

閱讀全文

與廢水中的氯離子怎麼檢測相關的資料

熱點內容
銀手鏈掉污水怎麼辦 瀏覽:373
凈水機如何安裝不漏水 瀏覽:98
熱水水垢清除 瀏覽:50
日本福島核廢水什麼法律禁止 瀏覽:589
怎麼除水壺里的水垢小蘇打 瀏覽:665
醫院污水處理標准放二氯化 瀏覽:554
ro膜的凈水器好用嗎 瀏覽:462
公共區飲水機多少千瓦 瀏覽:363
長寧櫥下式飲水機大概多少錢 瀏覽:764
天籟用什麼機油濾芯好 瀏覽:747
防污水收費 瀏覽:514
揚州抽污水池多少錢 瀏覽:504
社區飲水機凍住了怎麼辦 瀏覽:413
樹脂瓦有雙層保溫瓦嗎 瀏覽:251
飲水機PCB亮燈閃爍怎麼回事 瀏覽:869
前置凈水機怎麼樣 瀏覽:472
西峰污水處理廠地址 瀏覽:784
車載空氣凈化器怎麼打不開 瀏覽:568
凈水器藍管怎麼排放 瀏覽:26
中央空調水處理電導率 瀏覽:44