導航:首頁 > 污水知識 > 廢水量300m3a

廢水量300m3a

發布時間:2024-06-23 15:15:40

Ⅰ 燃煤電廠高鹽脫硫廢水固化基礎實驗

實驗將模擬高鹽水與水泥、粉煤灰和河砂拌合,製得固化體,養護至特定齡期後,對其抗壓強度和結合氯離子能力進行檢測。
通過控制單變數的方法,實驗探究了不同組分材料的配比對固化體的抗壓強度和結合氯離子能力的影響,並利用XRD對固化體粉末進行了產物表徵。
結果表明:在水泥配比為1.08時固化體的抗壓強度最高,粉煤灰配比大於0.25後固化體的抗壓強度提升明顯,模擬高鹽水配比越大,固化體的抗壓強度越低,河砂量對固化體的抗壓強度影響小。
實驗中製得的固化體在養護28天後,其抗壓強度值在30MPa以上,能達到《混凝土路緣石》標准中路緣石的最低抗壓強度要求。隨著水泥配比的增大,固化體的結合氯離子能力增大21.7%,且受水泥水化所需水量的限制,其增大趨勢漸緩;由於粉煤灰在水化過程中的產物與氯離子生成的s鹽量較少,隨著粉煤灰配比的增大,固化體的結合氯離子能力僅增大4.9%。XRD的結果驗證了水泥固化過程中s鹽的存在。
石灰石/石膏濕法脫硫工藝作為當前燃煤電廠主流脫硫技術,具有脫硫效率高,技術成熟,運行穩定等優點,但為了防止循環漿液系統氯離子等元素的過度富集,脫硫系統需要定期外排一定量的脫硫廢水。脫硫廢水具備以下特點:
1)水質受多種因素影響,且易隨工況及煤種變化而變化;
2)pH在4.5-6.5之間,呈弱酸性,氯離子含量高;
3)以石膏顆粒、二氧化硅、鐵鋁化合物為主要成分的懸浮物含量較高;
4)總溶解性固體含量較高,且變化范圍大,一般在30000-60000mg/L,Ca2+和Mg2+等硬度離子含量高;
5)汞、鉛、砷等重金屬第Ⅰ類污染物超標。因此,脫硫廢水處理倍受業內關注。
隨著《水污染防治行動計劃》(又稱為「水十條」)和《火電廠污染防治可行技術指南》的先後發布,脫硫廢水零排放成為燃煤電廠環保的重中之重。目前常用的處理工藝是神咐碧傳統化學沉澱方法,脫硫廢水經過中和沉澱、沉降、絮凝以及濃縮澄清過程,大部分懸浮物和重金屬離子會被去除,這一工藝能滿足廢水行業排放標准(DL/T997-2006),但無法去除遷移性較強的氯離子等可溶性鹽分,對硒離子去除效果也不佳,無法實現真正的脫硫廢水零排放。
以蒸發結晶和蒸發技術為主的零排放技術是當前脫硫廢水處理領域的研究熱點。蒸發結晶技術工藝復雜,運行成本高,通過簡單預處理後得到的混鹽無利用價值,採用分鹽工藝能得到純度較高的結晶鹽,但會進一步加大運行成本;低溫煙道蒸發以及旁路煙道蒸發技術增加飛灰中含塵量,將處理壓力轉移至電除塵器,粉煤灰中鹽分過高會影響水泥品質。
本研究涉及一種脫硫廢水煙氣濃縮減量及水泥化固定工藝。如圖1所示,在電除塵器後設置帶有液柱噴管系統的煙氣濃縮塔,利用電除塵器後10%-15%的熱煙氣與脫硫廢水液柱循環換熱,實現脫硫廢水5-10倍的減量濃縮。濃縮後的高鹽廢水與水泥、粉煤灰等膠凝材料經混合攪拌機攪拌後進入成型設備,隨後轉入恆定溫度及濕度的養護室中進行養護,根據性能可將養護後的固化體用作混凝土或路緣石等材料。
圖1脫硫廢水煙氣濃縮及水泥化固定工藝圖
上述工藝的有益效果為:
1)充分利用電除塵器後煙氣,與脫硫廢水接觸進行傳質傳熱,達到脫硫廢水濃縮減量的效果,是對電廠余熱資源的充分利用;
2)液柱噴管系統能減少噴淋層設置造成的噴嘴堵塞問題;
3)脫硫塔前煙氣含濕量增加,大幅度減少脫硫系統的工藝補充水;
4)水泥固定脫硫廢水中的鹽分和重金屬離子,將流動性的脫硫廢水轉化為物化性能穩定,不易彌散的固化體,有效避免二次污染;
5)充分利用電廠副產品粉煤灰。
水泥固化技術具有工藝簡單,原材料簡單易獲取,固化體性能穩定的優簡神點,被廣泛應用於放射性廢物、重金屬污染廢水及污泥等廢棄物處理領域。但固化技術用於脫硫廢水處理的研究較少,且主要利用粉煤灰的火山灰反應來實現固化穩定化,考慮到脫硫廢水水量巨大,固化體中水泥摻入少甚至不摻入,因此,製得的固化體抗壓強度性能差,一般只能作填埋處置。Renew等研究了同時固化脫硫廢水濃縮液和粉煤灰後的重金屬浸出性能,水泥占總混合物的10%,用量較少,所得固化體重金屬離子浸出率較低。
然而,對於固化穩定化脫硫廢水後固化體的氯離子遷移問題,還鮮有研究。在混凝土行業中,氯離子引起的鋼筋銹蝕是鋼筋混凝土耐久性能下降的主要原因,氯離子在水泥基材料中主游舉要存在三種形式:
1)與水泥中C3A相化學結合形成Friedel』s鹽;
2)被物理吸附在水化產物C-S-H凝膠上;
3)游離在孔溶液中。
其中,化學結合和物理吸附形式的氯離子統稱為結合氯離子,孔溶液中的游離氯稱為自由氯離子。自由氯離子會造成鋼筋銹蝕,可用結合氯離子能力來評價混凝土中氯離子存在形式。因此,考慮到固化體的用途,實驗利用模擬高鹽水與水泥、粉煤灰等材料拌合製得固化體,同時探究了水泥,粉煤灰等不同組分材料對固化體抗壓強度及結合氯離子能力的影響。
1實驗部分
1.1固化膠凝材料
礦渣硅酸鹽水泥(425#);普通建築用河砂;粉煤灰,取自華北地區某熱電廠;模擬高鹽水,實驗室配製的Cl-濃度為30000mg/L的NaCl溶液;脫硫廢水,某電廠經三聯箱處理後的脫硫廢水,熱濃縮後測得其Cl-濃度為30692mg/L。
1.2實驗方法
(1)固化體制備將水泥、河砂和粉煤灰按一定配比拌合,加入適量模擬高鹽水或脫硫廢水攪拌均勻後轉移至40mm×40mm×40mm的六聯立方體試模,靜置24h成型後置於飽和Ca(OH)2溶液中養護;
(2)抗壓強度檢測固化體養護至規定齡期後,對其進行抗壓強度試驗。恆應力壓力試驗機(河北昌吉儀器有限公司,DYE-300B)以恆定速度移動,當固化體達到最大承受力時,機器停止,通過最大承受力計算抗壓強度;
(3)結合氯離子能力檢測取養護至28d齡期的固化體粉末,分別用去離子水和硝酸浸泡,利用佛爾哈德法測得硝酸溶液中的氯離子濃度,可求得到單位質量漿體中總氯離子量Pt(mg/g);利用莫爾法測得水溶液中氯離子濃度,可求得單位質量漿體中自由氯離子量Pf(mg/g)。結合氯離子量Pb=總氯離子量Pt-自由氯離子量Pf。結合氯離子能力:
2實驗結果與分析
2.1組分材料對固化體抗壓強度的影響
抗壓強度是固化體的重要性能,也是固化體再利用的一個重要指標,為了研究各組分材料對固化體抗壓強度的影響,實驗選用水泥,粉煤灰,高鹽水以及河砂作為固化材料,分別設計了水泥量組,粉煤灰量組,高鹽水量組以及河砂量組。通過改變單一材料的摻入量,來探究各材料對固化體抗壓強度的影響,各組固化體配合比見表1。
表1各組固化體配合比
固化體養護至7d,14d,28d齡期後,對其進行抗壓強度檢測,3個平行樣品作為一組,選擇每組檢測的平均值作為該齡期下固化體抗壓強度值。
(1)水泥量對固化體抗壓強度的影響
圖2為水泥配比在0.92,1.00,1.08以及1.17時,四組固化體在不同齡期的抗壓強度變化趨勢圖。
圖2水泥量對固化體抗壓強度的影響趨勢圖
由圖2可以看出,7d和28d的固化體抗壓強度值隨水泥量增加呈現先增大後減小的趨勢,且都在配比為1.08時達到最大值,但7d抗壓強度總體變化幅度小,28d抗壓強度變化幅度大;14d固化體抗壓強度一直隨水泥量增大而增大,但上升趨勢越來越小,這說明水泥量的增加對固化體前期抗壓強度影響小,對後期抗壓強度影響大。
結合總體趨勢,水泥配比低時固化體在3個齡期的抗壓強度都很小,而配比過高會影響抗壓強度,這是由於在高鹽水量一定的條件下,水泥量的增加意味著水灰比的下降,在高鹽水量能滿足水化要求時,增加的水泥能充分水化,水泥漿內水化產物增多,漿體內毛細孔隙少,膠凝體積增加,因而抗壓強度高。隨著水泥量逐漸增加,高鹽水量不足以提供水泥漿充分水化所需水量時,多餘的水泥使得固化體內未結合的顆粒增多,漿體內毛細孔隙增加,抗壓強度下降。當水泥配比為1.08時,固化體抗壓強度性能最佳。
(2)粉煤灰量對固化體抗壓強度的影響
圖3為粉煤灰配比在0.15,0.20,0.25以及0.30時,四組固化體在不同齡期的抗壓強度變化趨勢圖。
由圖3可以看出,7d固化體抗壓強度隨粉煤灰量增加先增大後減小,說明粉煤灰量過高會影響固化體早期抗壓強度;14d和28d固化體抗壓強度僅在粉煤灰比例大於0.25後有明顯提升,配比低時抗壓強度變化小。
圖3粉煤灰量對固化體抗壓強度的影響趨勢圖
粉煤灰摻量過高會削弱固化體前期抗壓強度,提升後期抗壓強度。這是由於摻入粉煤灰的水泥拌水後,水泥在數量上和能量上占優勢,因而先發生水泥熟料的水化,釋放出Ca(OH)2等水化產物,與粉煤灰中的活性成分SiO2和Al2O3反應。
而粉煤灰中玻璃體結構穩定,表面緻密性較強,前期與Ca(OH)2的火山灰反應緩慢,未反應的粉煤灰使漿體內孔隙增多,固化體強度下降;隨著養護齡期的增加,粉煤灰的水化逐漸佔主導作用,粉煤灰本身存在的形態效應,活性效應以及微集料效應相互影響,粉煤灰表面會生成大量的水化硅酸鈣凝膠體,可以作為膠凝材料的一部分起到提高抗壓強度的作用。
(3)高鹽水量對固化體抗壓強度的影響
圖4為高鹽水量配比在0.62,0.67,0.72以及0.77時,四組固化體在不同齡期的抗壓強度變化趨勢圖。
圖4高鹽水量對固化體抗壓強度的影響趨勢圖
由圖4可以看出,在7d、14d以及28d三個齡期,固化體抗壓強度都隨著高鹽水量的增加而減小,且在14d以及28d齡期時抗壓強度的減小趨勢越來越明顯。在水泥量一定的條件下,高鹽水量增加會導致漿體內水量過大,超過水泥充分水化所需的水量,多餘的水分會在水泥凝結硬化過程中蒸發,在漿體內部留下氣孔,影響固化體的抗壓強度,且提供的水量越大,可蒸發的水量越大,固化體抗壓強度減少的越明顯。
(4)河砂量對固化體抗壓強度的影響
圖5為河砂量配比在0.62,0.67,0.72以及0.77時,四組固化體在不同齡期的抗壓強度變化趨勢圖。
由圖5可以看出,在7d、14d和28d三個齡期固化體抗壓強度隨河砂量的增大總體變化不大,分別在21MPa、30MPa和36MPa左右波動。因此,河砂量的增加對固化體抗壓強度影響較小,這是由於河砂在漿體內中主要起骨架或填充作用,不發生明顯的化學反應。
圖5河砂量對固化體抗壓強度的影響趨勢圖
由圖2-圖5中各組固化體抗壓強度數據可知,固化體28d齡期抗壓強度絕大部分在30MPa以上,而這符合《混凝土路緣石》(JC/T899-2016)標准中路緣石最低抗壓強度要求。因此,水泥固化工藝製得的固化體能滿足標准中抗壓強度要求。
2.2組分材料對固化體結合氯離子能力的影響
結合氯離子能力能直觀反映固化體中化學反應和物理吸附的氯離子能力,是評價鋼筋混凝土鋼筋銹蝕的重要指標。為了研究組分材料對固化體結合氯離子能力的影響,在實驗3.1中選擇水泥量組以及粉煤灰量組固化體,測定其28d齡期下的結合氯離子能力。
(1)水泥量對固化體結合氯離子能力的影響
圖6為水泥配比在0.92,1.00,1.08以及1.17時,四組固化體在28d齡期時結合氯離子能力的變化趨勢圖。
圖6水泥量對固化體結合氯離子能力影響趨勢圖(28d)
由圖6可知,28d齡期時固化體結合氯離子能力隨水泥配比的增大而增強,但增強幅度越來越小,說明水泥量對固化體結合氯離子能力的提升效果是有限的。水泥配比從0.92增大至1.08,結合氯離子能力由0.668增大為0.813,增大了21.7%。這與固化體水化過程有關,水泥用量增大,水化產物隨之增多,對氯離子的化學結合和物理吸附能力增強,因此結合氯離子能力增強,但受水化水量限制,水泥量過高時提升效果有限。
(2)粉煤灰量對固化體結合氯離子能力的影響
圖7為粉煤灰配比在0.15,0.20,0.25以及0.30時,四組固化體在28d齡期時結合氯離子能力的變化趨勢圖。
從圖7的總體趨勢可以看出,28d齡期時固化體結合氯離子能力隨粉煤灰配比的增大而增強,但增強幅度小,粉煤灰配比從0.15提高至0.30時,結合氯離子能力從0.733增大至0.769,僅增大了4.9%。這是因為粉煤灰在水泥水化過程形成的鹼性環境中會生成少量水化鋁酸鈣,可以與氯離子反應生成Fredel』s鹽,但生成量較少。
圖7粉煤灰量對固化體結合氯離子能力影響趨勢圖(28d)
2.3不同水樣製得的固化體XRD分析
利用模擬高鹽水與濃縮脫硫廢水分別製得固化體,養護至28d後對其粉末進行XRD衍射分析,結果如圖8所示。
由XRD衍射圖可知,除了常見的水泥水化產物SiO2和Ca(OH)2,兩種水樣製得的固化體中還存在Friedel』s鹽,這證明模擬高鹽水以及濃縮脫硫廢水中的氯離子與水泥中的C3A相確實發生反應生成了Friedel』s鹽,說明水泥固化過程中生成的Friedel』s鹽起到了重要作用。
圖8不同水樣製得的固化體XRD圖
3結論
(1)本文提出了一種脫硫廢水煙氣濃縮減量及水泥化固定工藝,將煙氣濃縮後的脫硫廢水與水泥、粉煤灰等材料拌合後製得固化體,從而實現污染物的水泥化固定;
(2)固化體抗壓強度隨養護齡期增加而提高,水泥配比為1.08時抗壓強度達到最高值,粉煤灰配比大於0.25後對抗壓強度提升明顯,高鹽水配比越大,抗壓強度越低,河砂量對固化體抗壓強度影響小;
(3)水泥配比從0.92增大至1.08,結合氯離子能力增大21.7%,粉煤灰配比從0.15提高至0.30時,結合氯離子能力僅增大了4.9%;
(4)XRD的結果驗證了水泥固化過程中Friedel』s鹽的存在。
相信經過以上的介紹,大家對燃煤電廠高鹽脫硫廢水固化基礎實驗也是有了一定的認識。歡迎登陸中達咨詢,查詢更多相關信息。

更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

Ⅱ 冶金工業廢水處理技術及工程實例的目錄

第一篇 冶金工業廢水處理概況與技術發展趨勢
1鋼鐵工業廢水污染特徵與處理現狀分析
1.1鋼鐵工業污染特徵與主要污染物
1.1.1鋼鐵工業排污特徵
1.1.2鋼鐵工業廢水特徵與主要污染物
1.2鋼鐵工業廢水處理回用現狀與節水狀況分析
1.2.1鋼鐵工業廢水處理回用現狀分析
1.2.2鋼鐵工業節水潛力與減排現狀分析
2有色金屬工業廢水污染特徵與節水減排狀況分析
2.1有色金屬工業廢水污染特徵與主要污染物
2.1.1有色金屬冶煉廢水來源與分類
2.1.2有色金屬冶煉廢水污染特徵與危害性
2.2有色金屬工業廢水處理現狀與節水減排途徑
2.2.1有色金屬工業冶煉廢水處理現狀與分析
2.2.2有色金屬工業冶煉廢水處理回用與節水減排對策
3冶金工業廢水處理回用的技術對策與發展趨勢
3.1冶金工業廢水處理回用的基本方法與途徑
3.1.1物理法處理回用技術與途徑
3.1.2化學法處理回用技術與途徑
3.1.3物理化學法處理技術與途徑
3.1.4生物法處理技術與途徑
3.2冶金工業廢水處理回用技術差距與對策
3.2.1冶金工業環保水平與差距
3.2.2鋼鐵工業用水安全保障技術與廢水處理回用的技術對策
3.2.3有色冶金工業廢水處理回用的技術對策
3.3冶金工業廢水處理回用技術的發展趨勢
3.3.1冶金工業廢水的最少量化
3.3.2冶金工業廢水的資源化
3.3.3冶金工業廢水的無害化
3.3.4循環經濟發展模式與廢水生態化
第二篇鋼鐵工業廢水處理與回用技術及工程實例
4鋼鐵工業廢水減排途徑與清潔生產減排新技術
4.1鋼鐵工業廢水特徵與處理工藝選擇
4.1.1鋼鐵工業廢水排放特徵
4.1.2鋼鐵工業廢水排放與處理工藝選擇
4.2鋼鐵工業節水減排途徑與廢水處理回用技術的差距
4.2.1鋼鐵工業節水減排途徑與對策
4.2.2鋼鐵工業廢水處理回用的技術差距與分析
5礦山廢水處理與回用技術及工程實例
5.1礦山廢水特徵與污染控制的技術措施
5.1.1礦山廢水特徵與水質水量
5.1.2控制礦山廢水污染的基本途徑與減排措施
5.2礦山廢水處理與回用技術
5.2.1中和沉澱法處理礦山廢水
5.2.2硫化物沉澱法處理礦山廢水
5.2.3金屬置換法處理礦山廢水
5.2.4沉澱浮選法處理礦山廢水
5.2.5生化法處理礦山酸性廢水
5.2.6中和?混凝沉澱法處理選礦廢水
5.2.7氧化還原法處理選礦廢水
5.3礦山廢水處理回用技術及工程實例
5.3.1南山鐵礦酸性廢水處理與回用的工程實例
5.3.2硫化法處理某礦山廢水的工程實例
5.3.3置換中和法處理某礦山廢水的工程實例
5.3.4姑山鐵礦選礦廢水混凝沉澱法處理回用的工程實例
6燒結廠廢水處理與回用技術及工程實例
6.1燒結廠廢水特徵與水質水量
6.1.1燒結廠用水要求與廢水來源
6.1.2燒結廠廢水特徵與處理技術要求
6.2提高燒結廠廢水資源回用技術途徑與措施
6.2.1改革工藝設備,消除和減少污染源
6.2.2採用先進處理技術,減少外排廢水量
6.2.3合理串接與循環用水,基本實現「零」排放
6.3燒結廠廢水處理工藝與回用技術
6.3.1燒結廠廢水處理工藝與回用技術發展進程
6.3.2濃縮池?濃泥斗處理與回用工藝
6.3.3濃縮池?水封拉鏈機處理與回用工藝
6.3.4濃縮?過濾法處理與回用工藝
6.3.5串級?循環綜合處理與回用工藝
6.3.6濃縮?噴漿法處理與回用工藝
6.3.7集中濃縮綜合處理與回用工藝
6.4燒結廠廢水處理回用技術及工程實例
6.4.1濃縮?過濾法處理與回用工程實例
6.4.2磁化?沉澱法處理與回用工程實例
6.4.3濃縮?噴漿法處理與回用工程實例
7焦化廢水處理與回用技術及工程實例
7.1焦化廢水來源、特徵與水質水量
7.1.1焦化廢水來源
7.1.2焦化廢水特徵與水質水量
7.2焦化廢水處理存在的難題與解決的途徑
7.2.1焦化廢水有機物組成
7.2.2預處理後焦化廢水中有機物組成與類別
7.2.3焦化廢水活性污泥法處理效果與問題
7.2.4厭氧狀態下難降解有機物的降解特性與效果
7.3焦化廢水處理與資源化技術的研究和開發
7.3.1國內外焦化廢水處理現狀與發展
7.3.2活性污泥法處理
7.3.3生物鐵法處理
7.3.4缺氧?好氧(A?O)法處理
7.3.5厭氧?缺氧?好氧(A?A?O)法處理
7.3.6A?O?O法處理
7.3.7應用HSB技術處理焦化廢水的試驗研究
7.3.8利用煙道氣處理焦化剩餘氨水或全部焦化廢水
7.4焦化廢水處理與資源化技術及工程實例
7.4.1A?O?O法處理焦化廢水的工程實例
7.4.2氣浮除油+A?O工藝處理焦化廢水的工程實例
7.4.3A?A?O法處理焦化廢水的工程實例
7.4.4採用深度處理實現焦化廢水回用的工程實例
7.4.5利用煙道氣處理焦化剩餘氨水或焦化廢水的工程實例
8煉鐵廠廢水處理與回用技術及工程實例
8.1煉鐵廠廢水特徵與水質水量
8.1.1煉鐵廠廢水來源與污染狀況
8.1.2煉鐵廠廢水特徵與水質狀況
8.2煉鐵廠廢水處理與回用技術
8.2.1高爐煤氣洗滌工藝與廢水來源
8.2.2高爐煤氣洗滌水的物理化學組成與沉降特性
8.2.3高爐煤氣洗滌水資源回用技術路線與工藝
8.2.4高爐煤氣洗滌水含氰處理與回用技術
8.2.5高爐沖渣水處理與回用技術
8.2.6煉鐵廠其他廢水處理與回用技術
8.3煉鐵廠廢水處理回用技術及工程實例
8.3.1湘潭某鋼鐵公司高爐煤氣洗滌水處理改造工程實例
8.3.2葯劑法處理高爐煤氣洗滌水與回用工程實例
8.3.3石灰碳化法處理高爐煤氣洗滌水與回用工程實例
8.3.4酸化法處理高爐煤氣洗滌水與回用工程實例
9煉鋼廠廢水處理與回用技術及工程實例
9.1煉鋼廠廢水特徵與水質水量
9.1.1煉鋼廠廢水來源與污染狀況
9.1.2煉鋼廠廢水特徵與水質水量
9.2煉鋼廠廢水處理與回用技術
9.2.1轉爐煙氣洗滌除塵廢水特徵
9.2.2轉爐除塵廢水成分與特性
9.2.3轉爐除塵廢水處理與回用技術
9.2.4連鑄機用水系統與水質要求
9.2.5連鑄廢水處理典型工藝流程與回用技術
9.3煉鋼廠廢水處理回用技術及工程實例
9.3.1寶鋼轉爐煙氣OG法除塵廢水處理循環回用工程實例
9.3.2武鋼轉爐煙氣OG法除塵廢水處理與回用工程實例
9.3.3寶鋼連鑄濁循環水處理與回用工程實例
10熱軋廠廢水處理與回用技術及工程實例
10.1熱軋廠廢水特徵與水質水量
10.1.1熱軋廠廢水來源與特徵
10.1.2熱軋廠廢水的水質水量
10.2熱軋廢水處理與回用技術
10.2.1熱軋廠廢水處理技術現狀與水平
10.2.2熱軋廢水處理要求與方案選擇
10.2.3熱軋廢水處理工藝
10.2.4熱軋廢水處理主要構築物
10.3熱軋廠廢水處理回用技術及工程實例
10.3.1柳鋼中板熱軋廢水處理與循環回用工程實例
10.3.2武鋼1700mm熱連軋帶鋼廠廢水處理與循環回用工程實例
10.3.3寶鋼1580mm熱軋帶鋼廠廢水處理與循環回用工程實例
11冷軋廠廢水處理與回用技術及工程實例
11.1冷軋廠廢水特徵與廢水水質水量
11.1.1冷軋廠廢水來源與組成
11.1.2冷軋廠廢水特徵與水質水量
11.2冷軋廠廢水處理工藝與回用技術
11.2.1冷軋含油、乳化液廢水處理與回用技術的方案選擇
11.2.2化學法處理含油、乳化液廢水與資源回用技術
11.2.3有機膜分離法處理含油、乳化液與資源回用技術
11.2.4無機膜分離法處理含油、乳化液與資源回用技術
11.2.5生物法和其他方法處理含油、乳化液廢水
11.2.6冷軋含鉻廢水處理與資源回用技術
11.2.7冷軋酸鹼性廢水處理技術
11.3冷軋廠廢水處理回用技術及工程實例
11.3.11550mm冷軋帶鋼廠廢水處理工程實例
11.3.2魯特納法鹽酸廢液回收技術與工程實例
12鋼鐵工業凈循環用水系統水質處理與水質穩定技術
12.1鋼鐵工業凈循環用水系統
12.1.1鋼鐵工業凈循環用水系統的形式
12.1.2鋼鐵工業凈循環用水系統
12.2燒結廠凈循環系統水質處理與回用技術
12.2.1腐蝕與污垢形成及其抑制方法
12.2.2水質穩定劑的種類與處理工藝
12.2.3處理工藝流程與葯劑選擇
12.3煉鐵廠凈循環系統廢水處理與回用技術
12.3.1高爐冷卻方式及其優缺點
12.3.2工業過濾水開路循環冷卻系統廢水處理與回用
12.3.3軟(純)水密閉循環冷卻系統廢水處理與回用
12.4煉鋼廠凈循環廢水處理與資源回用技術
12.4.1轉爐高溫煙氣循環冷卻系統與回用技術
12.4.2連鑄凈循環用水系統與回用技術
12.4.3水質結垢或腐蝕傾向的判斷與葯劑篩選
第三篇有色金屬工業廢水處理與回用技術及工程實例
13有色金屬工業廢水減排途徑與清潔生產減排新技術
13.1有色金屬工業廢水特徵與減排基本原則與措施
13.1.1有色金屬工業廢水污染狀況與特徵
13.1.2有色金屬工業廢水減排原則與措施
13.2有色金屬工業廢水處理途徑與工藝選擇
13.2.1礦山廢水處理途徑與工藝選擇
13.2.2重有色金屬冶煉廢水處理途徑與工藝選擇
13.2.3輕有色金屬冶煉廢水處理途徑與工藝選擇
13.2.4稀有金屬冶煉廢水處理途徑與工藝選擇
13.3有色金屬冶煉廢水的重金屬處理回收與減排技術
14礦山廢水處理與回用技術及工程實例
14.1礦山廢水特徵與水質水量
14.1.1采礦工序廢水特徵與水質水量
14.1.2選礦工序廢水來源與特徵及其水質水量
14.1.3礦山廢水污染控制與節水減排技術措施
14.2有色礦山采礦廢水處理與回用技術
14.2.1中和沉澱法處理工藝與回用技術
14.2.2硫化物沉澱法處理與回用技術
14.2.3鐵氧體法處理與回用技術
14.2.4氧化法和還原法處理與回用技術
14.2.5膜分離法處理工藝與回用技術
14.2.6萃取電積法處理工藝與回用技術
14.2.7生化法處理工藝
14.3有色礦山選礦廢水處理與回用技術
14.3.1自然沉澱法處理與回用技術
14.3.2中和沉澱與混凝沉澱法處理工藝與回用技術
14.3.3離子交換法處理工藝與回用技術
14.3.4浮上法處理與回用技術
14.4礦山廢水處理回用技術及工程實例
14.4.1武山銅礦礦山廢水處理技術及工程實例
14.4.2紫金山金礦含銅廢水處理技術及工程實踐
14.4.3山東招遠羅山金礦含氰廢水處理技術及工程實例
14.4.4江西德興銅礦選礦廢水處理與回用的工程實例
15重有色金屬冶煉廢水處理與回用技術及工程實例
15.1重有色金屬冶煉廢水來源與特徵
15.1.1銅冶煉廢水來源與特徵
15.1.2鉛冶煉廢水來源與特徵
15.1.3鋅冶煉廢水來源與特徵
15.1.4重有色金屬冶煉用水及其水質水量
15.2重有色金屬冶煉廢水處理與回用技術
15.2.1氫氧化物中和沉澱法處理與回用技術
15.2.2硫化物沉澱法處理與回用技術
15.2.3葯劑還原法處理與回用技術
15.2.4電解法處理與回用技術
15.2.5離子交換法處理與回用技術
15.2.6鐵氧體法處理與回用技術
15.2.7含汞廢水處理與回用技術
15.3重有色金屬冶煉廢水處理回用技術及工程實例
15.3.1貴溪冶煉廠廢水處理回用的工程實例
15.3.2富春江冶煉廠廢水處理回用的工程實例
15.3.3韶關冶煉廠廢水處理回用的工程實例
15.3.4株洲冶煉廠廢水處理的工程實例
15.3.5水口山冶煉廠廢水處理的工程實例
16輕有色金屬冶煉廢水處理工藝與回用技術及其工程實例
16.1輕有色金屬廢水來源與特徵
16.1.1鋁金屬冶煉廢水來源與特徵
16.1.2鎂金屬冶煉廢水來源與特徵
16.1.3鈦生產廢水來源與特徵
16.1.4氟化鹽生產廢水來源與特徵
16.1.5碳素製品生產廢水來源與特徵
16.2輕有色金屬冶煉廢水處理與回用技術
16.2.1輕有色金屬冶煉廢水處理與回用技術
16.2.2含氟廢水處理與回用技術
16.2.3煤氣發生站含酚氰廢水處理
16.2.4鹽酸、氯鹽等酸性廢水處理與資源化技術
16.3輕有色金屬冶煉廢水處理回用技術及工程實例
16.3.1撫順鋁廠廢水處理與回用技術的工程實例
16.3.2湘鄉鋁廠廢水處理與回用技術的工程實例
16.3.3鄭州鋁廠廢水處理與回用技術的工程實例
17稀有金屬冶煉廢水處理與回用技術及工程實例
17.1稀有金屬冶煉廢水來源與特徵
17.1.1稀有金屬冶煉廢水來源
17.1.2稀有金屬冶煉廢水特徵與水質狀況
17.2稀有金屬冶煉廢水處理與回用技術
17.2.1稀有金屬冶煉廢水處理技術
17.2.2稀土含砷廢水處理技術
17.2.3稀土放射性廢水處理技術
17.2.4稀土酸鹼廢水處理技術
17.2.5稀土含鈹廢水處理技術與回用
17.3稀有金屬冶煉廢水處理與回用技術及工程實例
17.3.1中和沉澱吸附法處理含釔、稀土放射性廢水的工程實例
17.3.2氯化鋇與廢磷鹼液處理稀土金屬生產廢水的工程實例
17.3.3中和吸附法處理稀土金屬冶煉廢水的工程實例
17.3.4混凝沉澱法處理含氟與重金屬廢水的工程實例
18黃金冶煉廢水處理與回用技術及工程實例
18.1黃金浸出與冶煉廢水來源與特徵
18.1.1黃金浸出廢水來源與特徵
18.1.2黃金冶煉廢水特徵
18.2黃金廢水處理與回用技術
18.2.1含金廢水處理與回用技術
18.2.2含氰廢水處理與回用技術
18.3黃金冶煉廢水處理回用技術的工程實例
18.3.1遼寧黃金冶煉廠廢水處理與回用技術的工程實例
18.3.2紫金山金礦冶煉廠廢水處理與回用技術的工程實例
參考文獻

Ⅲ 請問什麼是處理造紙廢水IC工藝IC代表什麼

厭氧內循環(IC)反應器
IC_反應器的資料匯總(圖文並舉)

廢水厭氧生物技術由於其巨大的處理能力和潛在的應用前景,一直是水處理技術研究的熱點。從傳統的厭氧接觸工藝發展到現今廣泛流行的UASB工藝,廢水厭氧處理技術已日趨成熟。隨著生產發展與資源、能耗、佔地等因素間矛盾的進一步突出,現有的厭氧工藝又面臨著嚴峻的挑戰,尤其是如何處理生產發展帶來的大量高濃度有機廢水,使得研發技術經濟更優化的厭氧工藝非常必要[1]。內循環厭氧處理技術(以下簡稱IC厭氧技術)就是在這一背景下產生的高效處理技術,它是20世紀80年代中期由荷蘭PAQUES公司研發成功,並推入國際廢水處理工程市場,目前已成功應用於土豆加工、啤酒、食品和檸檬酸等廢水處理中[2]。實踐證明,該技術去除有機物的能力遠遠超過普通厭氧處理技術(如UASB),而且IC反應器容積小、投資少、佔地省、運行穩定,是一種值得推廣的高效厭氧處理技術。
2
現有厭氧處理技術的局限性

厭氧處理是廢水生物處理技術的一種方法,要提高厭氧處理速率和效率,除了要提供給微生物一個良好的生長環境外,保持反應器內高的污泥濃度和良好的傳質效果也是2個關鍵性舉措。

以厭氧接觸工藝為代表的第1代厭氧反應器,污泥停留時間(SRT)和水力停留時間(HRT)大體相同,反應器內污泥濃度較低,處理效果差[3]。為了達到較好的處理效果,廢水在反應器內通常要停留幾天到幾十天之久。

以UASB工藝為代表的第2代厭氧反應器,依靠顆粒污泥的形成和三相分離器的作用,使污泥在反應器中滯留,實現了SRT>HRT,從而提高了反應器內污泥濃度,但是反應器的傳質過程並不理想。要改善傳質效果,最有效的方法就是提高表面水力負荷和表面產氣負荷[4]。然而高負荷產生的劇烈攪動又會使反應器內污泥處於完全膨脹狀態,使原本SRT>HRT向SRT=HRT方向轉變,污泥過量流失,處理效果變差。
3 IC反應器工作原理及技術優點
3.1 IC反應器工作原理
IC反應器基本構造如圖1所示,它相似由2層UASB反應器串聯而成。按功能劃分,反應器由下而上共分為5個區:混合區、第1厭氧區、第2厭氧區、沉澱區和氣液分離區。

混合區:反應器底部進水、顆粒污泥和氣液分離區迴流的泥水混合物有效地在此區混合。

第1厭氧區:混合區形成的泥水混合物進入該區,在高濃度污泥作用下,大部分有機物轉化為沼氣。混合液上升流和沼氣的劇烈擾動使該反應區內污泥呈膨脹和流化狀態,加強了泥水表面接觸,污泥由此而保持著高的活性。隨著沼氣產量的增多,一部分泥水混合物被沼氣提升至頂部的氣液分離區。

氣液分離區:被提升的混合物中的沼氣在此與泥水分離並導出處理系統,泥水混合物則沿著迴流管返回到最下端的混合區,與反應器底部的污泥和進水充分混合,實現了混合液的內部循環。

第2厭氧區:經第1厭氧區處理後的廢水,除一部分被沼氣提升外,其餘的都通過三相分離器進入第2厭氧區。該區污泥濃度較低,且廢水中大部分有機物已在第1厭氧區被降解,因此沼氣產生量較少。沼氣通過沼氣管導入氣液分離區,對第2厭氧區的擾動很小,這為污泥的停留提供了有利條件。

沉澱區:第2厭氧區的泥水混合物在沉澱區進行固液分離,上清液由出水管排走,沉澱的顆粒污泥返回第2厭氧區污泥床。

從IC反應器工作原理中可見,反應器通過2層三相分離器來實現SRT>HRT,獲得高污泥濃度;通過大量沼氣和內循環的劇烈擾動,使泥水充分接觸,獲得良好的傳質效果。
3.2 IC工藝技術優點
IC反應器的構造及其工作原理決定了其在控制厭氧處理影響因素方面比其它反應器更具有優勢。
(1)容積負荷高:IC反應器內污泥濃度高,微生物量大,且存在內循環,傳質效果好,進水有機負荷可超過普通厭氧反應器的3倍以上。
(2)節省投資和佔地面積:IC反應器容積負荷率高出普通UASB反應器3倍左右,其體積相當於普通反應器的1/4~1/3左右,大大降低了反應器的基建投資[5]。而且IC反應器高徑比很大(一般為4~8),所以佔地面積特別省,非常適合用地緊張的工礦企業。
(3)抗沖擊負荷能力強:處理低濃度廢水(COD=2000~3000mg/L)時,反應器內循環流量可達進水量的2~3倍;處理高濃度廢水(COD=10000~15000mg/L)時,內循環流量可達進水量的10~20倍[5]。大量的循環水和進水充分混合,使原水中的有害物質得到充分稀釋,大大降低了毒物對厭氧消化過程的影響。
(4)抗低溫能力強:溫度對厭氧消化的影響主要是對消化速率的影響。IC反應器由於含有大量的微生物,溫度對厭氧消化的影響變得不再顯著和嚴重。通常IC反應器厭氧消化可在常溫條件(20~25 ℃)下進行,這樣減少了消化保溫的困難,節省了能量。
(5)具有緩沖pH的能力:內循環流量相當於第1厭氧區的出水迴流,可利用COD轉化的鹼度,對pH起緩沖作用,使反應器內pH保持最佳狀態,同時還可減少進水的投鹼量。
(6)內部自動循環,不必外加動力:普通厭氧反應器的迴流是通過外部加壓實現的,而IC反應器以自身產生的沼氣作為提升的動力來實現混合液內循環,不必設泵強制循環,節省了動力消耗。
(7)出水穩定性好:利用二級UASB串聯分級厭氧處理,可以補償厭氧過程中K s高產生的不利影響。Van Lier[6]在1994年證明,反應器分級會降低出水VFA濃度,延長生物停留時間,使反應進行穩定。
(8)啟動周期短:IC反應器內污泥活性高,生物增殖快,為反應器快速啟動提供有利條件。IC反應器啟動周期一般為1~2個月,而普通UASB啟動周期長達4~6個月[7]。
(9)沼氣利用價值高:反應器產生的生物氣純度高,CH4為70%~80%,CO2為20%~30%,其它有機物為1%~5%,可作為燃料加以利用[8]。
4 IC處理技術應用現狀及發展前景
IC處理技術從問世以來已成功應用於土豆加工、菊苣加工、啤酒、檸檬酸和造紙等廢水處理中。1985年荷蘭首次應用IC反應器處理土豆加工廢水,容積負荷(以COD計)高達35~50kg/(m3·d),停留時間4~6 h[9];而處理同類廢水的UASB反應器容積負荷僅有10~15 kg/(m3·d),停留時間長達十幾到幾十個小時[3]。

在啤酒廢水處理工藝中,IC技術應用得較多,目前我國已有3家啤酒廠引進了此工藝。從運行結果看,IC工藝容積負荷(以COD計)可達15~30 kg/(m3·d),停留時間2~4.2 h,COD去除率ηCOD>75%[9];而UASB反應器容積負荷僅有4~7 kg/(m3·d),停留時間近10 h[3]。

對於處理高濃度和高鹽度的有機廢水,IC反應器也有成功的經驗。位於荷蘭Roosendaal的一家菊苣加工廠的廢水,COD約7900mg/L,SO42-為250mg/L,Cl-為4200mg/L。採用22m高、1100m3容積的IC反應器,容積負荷(以COD計)達31 kg/(m3·d),ηCOD>80%,平均停留時間僅6.1 h[9]。

我國無錫羅氏中亞檸檬有限公司的IC厭氧處理系統自1998年12月運行以來一直都很穩定,進水COD一般在8000mg/L以上,pH5.0左右,容積負荷(以COD計)可達30 kg/(m3·d),出水COD基本在2000mg/L以下,且每千克COD產沼氣0.42m3[10]。1996年IC反應器首次應用於紙漿造紙行業,並迅速獲得客戶歡迎,至今全世界造紙行業已建造IC反應器23個[11]。

表1列出了IC反應器和UASB反應器處理典型廢水的對照結果,從表中數據可以看出,IC反應器在很大程度上解決了UASB的不足,大大提高了反應器單位容積的處理容量。
表1 IC反應器與UASB反應器處理相同廢水的對比結果[1]

對比指標
反應器類型

IC
UASB

啤酒廢水
土豆加工廢水
啤酒廢水
土豆加工廢水

反應器體積(m3)
6×162
100
1400
2×1700

反應器高度(m)
20
15
6.4
5.5

水力停留時間(h)
2.1
4.0
6
30

容積負荷kg/(m3·d)
24
48
6.8
10

進水COD(mg/L)
2000
6000~8000
1700
12000

ηCOD(%)
80
85
80
95

隨著生產的發展,經濟高效、節能省地的厭氧反應器越來越受到水處理工作者的青睞。IC反應器的一系列技術優點及其工程成功實踐,是現代厭氧反應器的一個突破,值得進一步研究開發。而且由於反應器容積小,生產、運輸、安裝和維修都十分方便,產業化前景也很樂觀。
5 IC反應器存在的幾個問題
COD容積負荷大幅度提高,使IC反應器具備很高的處理容量,同時也帶來了不少新的問題:

(1)從構造上看,IC反應器內部結構比普通厭氧反應器復雜,設計施工要求高。反應器高徑比大,一方面增加了進水泵的動力消耗,提高了運行費用;另一方面加快了水流上升速度,使出水中細微顆粒物比UASB多,加重了後續處理的負擔[12]。另外內循環中泥水混合液的上升還易產生堵塞現象,使內循環癱瘓,處理效果變差。

(2)發酵細菌通過胞外酶作用將不溶性有機物水解成可溶性有機物,再將可溶性的大分子有機物轉化成脂肪酸和醇類等,該類細菌水解過程相當緩慢[13]。IC反應器較短的水力停留時間勢必影響不溶性有機物的去除效果。

(3)在厭氧反應中,有機負荷、產氣量和處理程度三者之間存在著密切的聯系和平衡關系。一般較高的有機負荷可獲得較大的產氣量,但處理程度會降低[13]。因此,IC反應器的總體去除效率相比UASB反應器來講要低些。

(4)缺乏在IC反應器水力條件下培養活性和沉降性能良好的顆粒污泥關鍵技術。目前國內引進的IC反應器均採用荷蘭進口的顆粒污泥接種[2],增加了工程造價。

上述問題有待在對IC厭氧處理技術內部規律進行更深入探討的基礎上,結合工程實踐加以克服,使這一新技術更加完善。
http://cache..com/c?word=%B7%CF%CB%AE%3Bic%3B%B9%A4%D2%D5&url=http%3A//www%2Echinacitywater%2Eorg/bbs/viewthread%2Ephp%3Ftid%3D78401&p=9264c316d9c059b702bd9b7d0c4f&user=

Ⅳ 請問凈水機一年需要消耗多少廢水

這個不好說,得看你家的人口數量還有用水多少吧,我家用的海爾HR04H66-3A凈水機是2:1的廢水比。這個消耗也沒有說感覺水費貴了多少,完全可以接受

Ⅳ 尾礦管道的用途

上述性能使UHMWPE管材不僅可以輸送流體、氣體,而且可輸送固體顆粒、粉末等鬆散物料和漿體狀固液混合物料,從而拓展了塑料管材的應用范圍。
1 鬆散物料輸送
固體顆粒、粉末等鬆散物料的輸送,主要採用以空氣為載體的氣力管道輸送方式,在高速風送過程中物料對管道造成磨損,且由於磨擦阻力使功率消耗高、噪音較大。UHMWPE管以其耐磨損、耐沖擊、磨擦系數低、自潤滑、不粘附、衛生無毒、消音、輕便等優點而可替代鋼管、不銹鋼管等在以下領域應用;
(1)糧食、飼料加工業
國內外糧食加工行業的麵粉廠、雜糧加工廠和大米廠以及儲糧庫等均採用氣力輸送糧食[2]。然而用鋼管或鐵皮管在較高風速下輸送小麥、麵粉、大米、穀物、大豆、玉米等糧食時不僅噪音大,而且存在嚴重的磨損問題,如麵粉廠輸送小麥,使用鐵皮管4個月就磨損穿洞。儲糧庫內糧垛的轉移採用氣力管道輸送,通常完成一次轉移後,使用的鐵皮管就會磨損報廢。現在,北京、青島等地的麵粉廠採用了以UHMWPE片材為內襯的鋼管或UHMWPE管,其耐磨性提高了7~10倍,養活噪音,改善了環境。全國有大型麵粉廠2500多家,中小型麵粉廠上萬家[3],應用UHMWPE管的潛力很大。
同樣,UHMWPE管也可在飼料加工業中應用。國內外現代化飼料廠均採用金屬管道輸送物料。比如,在預混料生產線的原料接收工序,礦物質和其它大組分粉狀原料經正壓輸送系統直接由風運送入生產線的配料倉;在成品包裝工序,成品預混料由風運送入濃縮飼料生產線的配料倉。截止到1994年底,全國共有飼料加工企業11000多家,即使部分企業採用UHMWPE管,其用量也相當可觀。
(2)油脂、釀酒工業
油脂廠輸料管彎頭處磨損現象嚴重,輸送菜籽及餅粕時更為突出。如某榨油廠送料車間使用6mm鋼板卷制管送料,在運送風速20m/s的條件下,使用10d左右彎頭處就出現磨穿現象;軋床車間清雜後菜籽的輸料彎頭採用厚度5mm的玻璃製成,經運送1400t菜籽後出現磨穿現象。
釀酒廠豆粕、麩皮等原料,以及熟料、成曲、脫脂酒渣等都採用氣力輸送。酒精廠的主要原料瓜干大部分為片狀,通常不得不採用大風速輸送,導致較小雜質(砂子等)也隨著氣流運動,不僅輸送噪音大,而且管路磨損嚴重。如果採用UHMWPE管,可以提高管道的使用壽命,且有良好的消音性,大幅度降低輸送噪音。
(3)食品、醫葯工業
食品工業中可以用氣力輸送的物料很多,如精鹽、奶粉、澱粉、薯粉、砂糖、可可、調味品、豆渣、茶葉、葵花籽等。某加碘精製鹽廠利用φ125mm管道通過氣力輸送原鹽,鹽粒在管道中心運動時,由於速度高,對管壁有較強的磨擦,尤其彎管處更為嚴重;干法調味奶粉生產線為半自動封閉式,採用風力輸送物料,由於有衛生性要求,所有與物料接觸的部位都有杉昂貴的不銹鋼製造。如果採用UHMWPE管就便宜得多。卷煙生產也涉及氣力輸送管道,國外50年代就已採用管道輸送煙葉、煙梗、煙絲等。
醫葯工業中對葯丸和葯片也採用氣力輸送,除了衛生性要求外,還需考慮破碎問題。UHMWPE管衛生無毒,在國外已符合日本衛生協會的標准,並得到美國食品及葯物行政管理局(FDA)和美國農業部(USDA)的同意,可用於接觸食品和葯物,因此在食品、醫葯輸送中,不僅可替代昂貴的不銹鋼管,而且因其能吸收沖擊能,可減少物料在輸送中的破碎。
(4)紡織、化纖工業
氣力輸送在紡織工業中已廣泛地用來輸送棉花、羊毛、廢棉、麻屑和其它纖維物料。現代化的混、開清棉是用氣流通過管道把原棉輸送給蓋板梳棉機,並連續地把纖維分配給各台機器。滌綸長絲廠等化纖生產中的原料、半成品和產品也採用脈沖氣力輸送方式代替傳統的機械輸送,輸送的物料包括聚醯胺(PA)切片、聚酯切片、聚乙烯醇、短切纖維等。輸送過程中切片與管壁沖擊磨擦產生的粉末及絲條狀破屑甚多,直接影響到熔融紡絲的質量。如果採用UHMWPE管,由於該管材能吸收沖擊能,可以減弱切片與管壁的沖擊,降低粉末產生量。
(5)建材、散裝物料運輸
水泥、石灰、沙(砂)石、混凝土、耐火材料、陶瓷原料、焙燒礦、礬土、石膏等建材的輸送中,管道磨損較為嚴重。比如,某水泥公司的φ89mm×4.5mm窯灰輸送管,採用無縫鋼管只能使用3個月。水泥輸送管道彎曲部分雖採用了鑄鐵拱壁彎頭,也只使用2a就磨破了。在玻璃生產中已普遍地採用了氣力卸料系統,氣力輸送玻璃配合料的速度為10~15m/s,輸送過程中管道容易磨損。
UHMWPE管具有耐磨損、自潤滑等優點,用於輸送流砂,其壽命比鋼管可提高18倍,成本降低24倍;與PA管相比,其壽命提高3倍,成本降低近7倍;輸送時管內阻力比金屬管小25%。
在散裝物料運輸中,各種散裝的水泥、穀物、食鹽、礬土、化肥、煤塊等物料需要採用氣力輸送裝置的卸料機來輸送。我國沿海接卸進口糧食的港口,在散糧泊位配置了吸糧機、裝卸機和圓筒倉,中小港口的多數糧食泊位都配備了固定式吸糧機,均需要相應的耐磨輸送管道。到2000年我國水泥散裝運量將達到1.7億t以上,糧食散裝運量將有6000萬t。由此看來,UHMWPE管在散裝物料運輸中具有廣闊的應用前景。
(6)化工工業
化工廠經常會遇到向高壓反應器輸送物料的問題,如採用回轉供料高壓壓送方式輸送礬土、銅燒結礦石、硫胺、氯化鉀等,也採用氣力輸送粉狀原料如純鹼、碳粉、粉狀塗料、顏料、染料、磷肥粉、洗滌劑、磷礦石、粉狀氧化鋁、催化劑、硫酸鋇、二氧化鈦等。在電石生產中,採用正壓式輸送焦粉、石灰粉等,風送管路為碳鋼管,由於磨損大,彎頭處需設置耐磨襯里。在塑料製品廠,不僅利用氣力輸送向單機供料,而且還用於集中供料系統,通過管網將各種原料送至各台塑料加工機械。在合成樹脂生產中,氣力輸送裝置用來輸送PE,PS,PA粒料及PVC、聚丁二烯、酚醛等粉料。如齊魯石化公司年產6萬tLLDPE裝置的氣力輸送包括粉料輸送、摻混均化和顆粒產品的輸送[。輸送塑料顆粒存在的問題是,顆粒磨損產生的粉末會粘附在管壁上形成薄膜,如果採用具有自潤滑、不粘附特性的UHMWPE管就可減少這種現象。
(7)礦粉輸送
選礦廠採用乾式自磨礦石時,需要用風力將磨好的產品排出。金屬礦山和煤礦近年來已開始採用風力填充的新工藝,即利用氣力將矸石、爐渣等充填材料拋擲到采空區。機械鑄造廠的鑄造用砂、煤粉、粘土、鐵屑、噴塗鐵丸等現在也採用氣力輸送。輸送這些礦粉時,由於磨損嚴重,普遍鋼彎管的使用壽命通常為6個月。煤礦、礦山輸送高密度介質也存在鋼管易磨損的問題。如某選煤廠採用鋼管輸送磁鐵粉,鋼管平均每4個月就需更換一次;某鐵礦使用的長度為300m的鐵精粉輸送管路為普通鋼管時,每年翻轉180°,2a即報廢。若採用UHMWPE管可顯著提高其使用壽命,並能減少維護工作量。
(8)電廠干除灰
我國火力發電廠的干除灰系統一般採用負壓、低正壓和正壓輸送等氣力輸送。由於輸送速度高達15~25m/s,輸灰管道磨損嚴重,使用壽命短。如某電廠6台機組8條鋼灰管輸送干灰,其彎頭使用壽命僅3個月。在干灰溫度較低的情況下,採用UHMWPE管可大大提高使用壽命。
2 漿體輸送
漿體狀固液混合物的輸送主要採用以水為載體的水力管道輸送方式,輸送時易產生磨損、腐蝕、結垢等問題。UHMWPE管以其耐磨損、耐腐蝕、不結垢、磨擦系數低等優點,可替代普通鋼管、不銹鋼管、特種鋼管等在下列領域應用。
(1)采選礦、冶金
煤礦、化工礦、鐵礦、有色金屬礦及非金屬礦等的采礦,選礦廠的礦漿輸送大量採用管道,如原礦管、尾礦管、精礦管、浮選系統管等。選煤廠輸送煤炭洗選所產生的浮選入料、浮選精礦和重介質懸浮液等固液混合物都要用管道輸送。據日本統計,輸送礦漿的精礦管使用壽命為15000h,原尾礦管最短時為6000h,砂漿填充用管多為6000h,最長時為1000h。目前,我國選礦廠尾礦、精礦輸送用管道多為鋼管,由於礦漿中含有約30%的鐵礦石,對鋼管的磨損相當厲害,使用壽命僅為1~2a,且每半年要翻轉90°,工作量很大。
冶金行業的焦炭粉、礦粉、礦漿及冶煉廢渣的處理也涉及大量的管道輸送。如革鋼鐵公司的一個選礦廠用於精選各種礦物的輸送管路長達60km,對磨損最嚴重的部位通常幾個星期需要更換一次管道,其餘管道每隔不長時間就需進行翻轉,工作量之大可想而知。我國是煤炭、礦業大國,煤礦多達9萬余個。據不完全統計,每年需耐磨塑料礦用管約2萬t,若普遍使用,每年需求量在4萬t以上,可節約鋼材20萬t。據報道,美國聯邦環境保護委員會規定采礦業,特別是礦砂排水操作要採用UHMWPE管。
(2)水煤漿工程
水煤漿是一種新型的高粘度液、固混合流體,由約70%的煤粉、30%的水及1%的化學添加劑配製而成,可以像油一樣通過管道輸送到終點,再經過脫水、乾燥處理後送給用戶。水煤漿在北京造紙一廠、桂林鋼廠、紹興軋鋼廠等廠燃用均取得成功。
我國自80年代初開始規劃了10條不同長度的輸煤管道,其中孟-濰管道長達600km。煤炭管道運輸是當前解決我國煤炭運力不足的重要運輸方式。1998年我國制定的能源工業長期發展計劃綱要中明顯指出:「要發展管道輸煤,輸送水煤漿」。目前全國已有北京京西水煤漿廠、山東兗日水煤漿廠等7個水煤漿廠。如採用UHMWPE管,就可抵抗這種高粘度固液混合物產生的磨損和腐蝕現象,並因其具有自潤滑性而減小輸送阻力。據了解,國內某重點工程為了長距離輸送煤頭,已花費高價(3萬美元/t)從國外購進了大量的UHMWPE管材作為輸送管道。
(3)電廠沖灰
火力發電廠水力沖灰系統中普遍存在著管內壁結垢的問題。如某火電廠總裝機容量為33萬kw,沖灰管道長6.5km,灰漿管內結垢速度為53mm/a,每1.5a停運去垢檢修一次,人工敲打去垢,工時4個月。運行6a的灰管由於結垢嚴重幾乎堵死,並已將13km的鑄鐵管報廢。又如2台30萬kw發電機組,沖灰管2a酸洗一次,除垢後鋼管內表面銹蝕非常嚴重,表層剝落,底部更甚,使用5a管壁減薄4mm以上,入口處100m范圍內結垢、銹蝕更為嚴重。沖灰管除了結垢外,磨損也比較嚴重,如高井電廠φ273mm×10mm的沖灰管道,直管僅用2a就磨漏,彎頭部位更為突出。
UHMWPE管抗粘附,不易掛灰,可減少結垢現象,即使有一定程度的結垢,清除也比較容易,並且管材耐磨損、耐腐蝕,可大大延長使用壽命,且不需要塗刷防腐塗料,能節省維護費用。國內曾用UHMWPE板材卷製成內襯管做試驗,結果表明,基本不結垢,其耐磨性比普通鋼管提高了8倍。
我國現有大型燃煤電廠400餘座,小型電廠更多,今後每年將以10家以上的速度增建火力發電廠。每個電廠若需UHMWPE管100t,全國就需幾萬噸。
(4)海湖鹽化工
由於UHMWPE管具有極高的耐磨性、耐腐蝕性及耐低溫性,可望在海湖鹽化工行業鹽漿、鹵水的輸送中發揮重要作用。
①海鹽輸送 目前北方海鹽生產的收儲工藝流程中,集中式鹽田採用大管道輸洗;半集中鹽田採用小管道輸洗。機械化鹽場將原鹽經幾公里長的水力管道(管徑為ф114mm,ф125mm等)輸送至篩房。鹽化工廠將含有雜質的海鹽通過粉碎、洗滌和乾燥獲得普通精鹽產品(又稱精洗鹽)。從鹽坨到洗滌設備之間,各廠大都採用管道水力輸送的頭道洗滌工序。海鹽在鋼管輸送過程中受到機械和水力的磨擦沖擊,鹽粒破碎,原鹽中的粉鹽比例增加(隨鹵水溢流而去),造成粉鹽流失較嚴重,而且,鋼管輸送鹽漿,容易產生結垢現象。塑料管已開始在輸鹽系統應用,如某鹽湖集團公司采鹽系統輸送管道採用了大口徑HDPE管,如果採用UHMWPE管則使用效果更佳,且可吸收沖擊能而減少鹽粒的破碎。據了解,最近某鹽化工廠開始試用UHMWPE管作鹽漿輸送管道。我國北方海鹽年產量佔全國鹽產量的2/3,氣溫較低,而UHMWPE管的耐寒性極優。
②鹵水輸送 國外鹽廠和制鹼廠的輸送鹵水管道較多,如澳大利亞黑德蘭鹽場的輸鹵管道長25km,西德博斯鹽礦的輸鹵管道長達70km。我國海湖鹽生產現改傳統明溝輸鹵方式為壓力管道輸鹵;每年開發礦鹽也在不斷新增和改造管道,如果集中制鹵區的管道總長5km,管徑為ф100~ф250mm的石棉水泥管輸送鹽鹵達500km以上,一般工作壓力為0.2~0.5Mpa,使用效果不一,有的鹽場使用1~3a就報廢了,最短僅1a就腐爛、破裂。UHMWPE管優良的耐腐蝕性將會大大提高其使用壽命。
(5)疏浚、排泥
所謂疏浚就是用挖泥船挖掘港口、江河、湖泊等泥砂,並將泥砂排出的作業。如湖鹽船采船運隨著生產期的延長,航道和港池內沉積的淤泥、粉鹽和粒鹽越積越厚,直到影響鹽駁的正常航行,所以通常採用絞吸式挖泥船進行疏浚,其附屬設備就是水上浮筒、排泥管、水下沉管和陸上排泥管。現在,許多城市護城河、湖泊的清淤也開始採用新工藝,即從水底直接抽吸淤泥漿,經管道實現長距離排送。挖泥船配管中有水上浮動管線、零號及上坡管線、水上架設管線、水底管線、陸上架設管線。這些挖泥配管必須耐波浪、潮流。
據統計,年均有4億t的泥沙淤積在黃河河道內。我國將對黃河實施「百船工程」項目,即從國外引進百艘挖泥船對黃河等河流主河道進行清淤治理。每艘船需配備4km泥砂輸送管。因鋼管易銹蝕、磨損快、笨重,且不易裝卸,因而挖泥船輸出國要求配用UHMWPE管,僅此項目每年需用耐磨管材8000多t。此外,我國現有挖泥船400多艘,將需耐磨管材15000t以上。
城市下水污泥是濃度較低的漿狀物,歐美、日本等國家和地區早就用管道進行輸送,如美國在洛杉磯、芝加哥等地修建了84km管道;日本在東京都、大阪等地修建了50km的污泥輸送管道[18]。建築工程中挖泥工地的輸泥管道由於長期暴露在曠野中,經常遭受日曬和雨淋,且泥漿中砂、礫石堅硬易磨損管壁,鋼質輸泥管的平均使用壽命僅為4a,且每年需要拷鏟、塗漆保護。而用UHMWPE管輸送泥漿既耐磨,又可減少維護工作。
3 流體、氣體輸送
UHMWPE管也適於輸送各種流體、氣體。
(1)建築業
UHMWPE管的沖擊強度、耐低溫性位於現有塑料管之首,遠優於PVC-U管、PP-R管、PB管、ABS管等,有利於抵抗意外沖擊和嚴寒的破壞,而且抗內壓強度、耐環境應力開裂性可與交聯PE管、鋁塑復合管相媲美,因此安全可靠、使用壽命長;因其能吸收沖擊能,排水時的消音性優於實壁PVC-U管;用作埋地管時,柔韌性好,地層變動時(如地震)不易被破壞;其使用溫度一般為100℃以下,但由於分子量極高,分子鏈段移動困難,其熱變形溫度比普通PE高,如果沒有應力的作用,在熔點以上的150~200℃下,製品的形狀也不會發生改變,與交聯PE的熱性能相似。因此,建築業的供水管、排水管、污水管、排氣管、煤氣管、下水管都可採用UHMWPE管。比如,鹽化車間內的室內外鑄鐵排水管,流經管道的多為鹵水,或含有酸、鹼的污水,再加上地下水的侵蝕,使用壽命通常只有3~4a;沿海地區氣候潮濕,帶著大量含鹵濕空氣,使得居民住宅的鑄鐵排水管銹蝕斑斑。因此,耐腐蝕性強的UHMWPE管大有用武之地。據預測,2000年我國塑料給水管的需求量為10萬~15萬t。到2010年,全國新建住宅室內排水管的80%將採用塑料管,基本淘汰傳統鑄鐵管;室內上水管採用柔性塑料管的比例將達到30%。這為大力推廣UHMWPE管的應用提供了條件。
(2)水處理
工業「三廢」的腐蝕性較強,如某鹼廠通過10km管道排廢渣,鋼管磨壞後產生泄漏,對周圍環境造成危害,鹼廠每年購置防腐塗料的費用就達數百萬元。某石化公司的污水處理廠,來自各分廠的工業污水經中和、沉澱等工序後,變成泥漿狀的污物,排污鑄鐵管通常3a就磨穿,輸送腐蝕性廢水處理污泥的不銹鋼管使用1a多因磨得太薄而發生縮徑現象。據報道,美國菲利浦化學公司的廢水處理系統中使用了UHMWPE管材,其設計使用壽命為50a[31]。水處理和廢水處理可能是塑料管的另一大市場。據EAP估計,2000年用於水處理和廢水處理裝置消耗的塑料管大約超過350億美元。
(3)化學、制葯工業
UHMWPE管具有優良的耐化學葯品性,除強氧化性酸液外,在一定溫度和濃度范圍內能耐各種腐蝕性介質(酸、鹼、鹽)及有機介質(萘溶劑除外),其在20℃和80℃的80種有機溶劑中浸漬30d,外表無任何反常現象,其它物理性能也幾乎沒有變化。
據了解,目前各地的化工廠主要用鈦鋼管路輸送硫酸(發煙)、砂酸、鹽酸和各種強鹼腐蝕性介質,鈦鋼價格比高價的氟塑料高1倍以上。化工用管的管徑通常為ф10~ф76mm,壓力一般為0.2Mpa。我國制葯設備使用的管路、管接頭等主要材質為進口不銹鋼,管徑通常為ф15~ф108mm,輸送壓力為0.6~0.8Mpa。UHMWPE管在一定范圍內輸送腐蝕性化工原料時,可替代價格昂貴的不銹鋼管和氟塑料管。
(4)燃氣工業
天然氣、煤氣管等要求耐0.4Mpa的壓力,其運行的安全性受到重視。80年代後期,英國石油公司開發成功「第三代HDPE」,其較高的重均分子量是保證高的快速開裂阻力的關鍵因素。UHMWPE的重均分子量在300萬以上,脆化溫度在-80℃以下,可推斷其具有優良的耐低溫快速開裂性。美國菲利浦製品公司曾鋪設了1600km的UHMWPE煤氣輸送管道。
(5)海水利用、船舶
據不完全統計,青島、威海、龍口等地的年海水利用總量已超過8億m3,廣泛用於電力、化工、機械、紡織、食品等工業。由於海水腐蝕較嚴重,必須採取適當的防腐措施才能保證系統安全運行,目前所採用的管道材料為:循環水干管選用內襯水泥砂漿的鑄鐵管,支管為加環氧樹脂內襯的鋼管。耐腐蝕的UHMWPE管可以在該領域應用。
船舶上的管路較多,如空氣通風管、測深管、壓載水吸入管、冷水管、盥洗系統、沖洗用管路、炮台冷卻水系統、污水管、淡水冷卻管、房間和走廊內的常溫低壓管等。建造一艘15000t油輪,全船的金屬管重約207t。船用管過去均為銅管、鋼管、鋁管和鉛管,搬運時不但笨重,勞動強度大,而且耐腐蝕性能差,使用壽命短,一般4~5mm厚的鋼管3~4a就會爛穿。UHMWPE管不僅輕便,而且極耐腐蝕,在船上應用的潛力頗大。
(6)石油工業
油田是消耗各種管材的大戶。據報道[20],石油和天然氣市場,特別是二次和三次回採的小塊油田,1983年就用了約39000km的塑料管材。我國油田開發已有幾十年歷史,隨著部分油田開發進入中後期,特別是一些油田井液含水增加以及鹽鹼嚴重,加快了管道腐蝕速度,僅大慶油田每年就需更換大量的各種管道。目前,在油田應用的主要塑料管為普通PE內襯管,而UHMWPE作為內襯管,具有耐腐蝕、耐磨、輸送阻力小等優點。
4 其它
日本作新工業公司開發成功的UHMWPE管材,以取代氟塑料管為目標,准備向半導體行業和醫療部門銷售[37];厚度10mm以下的UHMWPE薄壁管已用作皮帶輸送機和抄紙機輥子的包覆管[38]。
UHMWPE的電絕緣性好,介電強度可達50kv/mm,高於PVC-U管和交聯PE管(介電強度分別為23~28,41kv/mm),尤其是損耗角正切值低,故可作為在高頻和超高頻區間工作的電纜管道[39];並可製作汽車用電纜套管;染整工業中染料液的輸送也是它的重要市場[40]。
將UHMWPE管切制為輥筒,可用作皮帶輸送線的塑料托輥;切制加工為磨擦領域用的滑動材料,以代替銅套、PA套、PTFE套等。
UHMWPE的低溫性能極為優異,在液氦溫度(-269℃)下仍具延展性,因此可望在製冷技術、低溫工程方面開拓應用領域。
5 結語
UHMWPE管作為一種綜合性能優異的新型工程塑料管材,在輸送各種粉體、漿體、流體、氣體方面可以廣泛地應用,具有廣闊的市場潛力。為解決大批量、多品種工業物料輸送中管道嚴重磨損、腐蝕、結垢等問題展現出美好的前景。加快UHMWPE管的開發與應用並開拓新的市場領域應受到人們的重視。

Ⅵ 感光顯影廢水(就是照片沖印時產生的廢水),請教其廢水處理工藝,

我學化學的知道裡面含有有用的貴重金屬.
一、置換法:用化學活動性較大的金版屬,如鋅、鐵、鋁等權,從廢定影液中置換出銀。此法較簡單,可以用金屬粉、金屬塊或金屬條直接加入或插入廢定影液中,銀便被置換附著在金屬表面,但置換後的產品不純,尚需進一步提純。

二、沉澱法:用硫化鈉使定影液中的銀,以硫化銀的形式沉澱出來,再把硫化銀沉澱物加入熱的濃鹽酸中,並加入過量鐵粉,便可得到白銀,但產品也需再提純。有關反應式如下:

Ⅶ 廢水中含氮量用什麼方法測

用凱式定氮法,就是把所有含氮有機物轉化為NH3+的鹽,再測定氨氮的含量

蛋白質是含氮的有機化合物。食品與硫酸和催化劑一同加熱消化,使蛋白質分解,分解的氨與硫酸結合生成硫酸銨。然後鹼化蒸餾使氨游離,用硼酸吸收後再以硫酸或鹽酸標准溶液滴定,根據酸的消耗量乘以換算系數,即為蛋白質含量。
1.有機物中的胺根在強熱和CuSO4,濃H2SO4 作用下,硝化生成(NH4)2SO4
反應式為:
2NH2+H2S04+2H=(NH4)2S04 (其中CuSO4做催化劑)
2.在凱氏定氮器中與鹼作用,通過蒸餾釋放出NH3 ,收集於H3BO3 溶液中
反應式為:
(NH4)2SO4+2NaOH=2NH3+2H2O+Na2SO4
2NH3+4H3BO3=(NH4)2B4O7+5H2O
3. 用已知濃度的H2SO4(或HCI)標准溶液滴定,根據HCI消耗的量計算出氮的含量,然後乘以相應的換算因子,既得蛋白質的含量
反應式為:
(NH4)2B4O7+H2SO4+5H2O=(NH4)2SO4+4H3BO3
(NH4)2B4O7+2HCl+5H2O=2NH4Cl+4H3BO3

閱讀全文

與廢水量300m3a相關的資料

熱點內容
瑩石凈水機怎麼樣 瀏覽:178
安吉爾濾水器廢水口 瀏覽:981
用乙醇減壓蒸餾使用注意事項 瀏覽:674
李連傑電影全集免費完整版 瀏覽:453
SBAR污水處理基本介紹 瀏覽:12
實驗室蒸餾水要多久 瀏覽:548
廢水cod不合格怎麼辦 瀏覽:2
天津石化污水排到天津港 瀏覽:497
藍鑽硅內膽熱水器能用檸萌酸除垢嗎 瀏覽:563
熱水瓶的水垢怎麼處理 瀏覽:537
夏普空氣凈化器怎麼樣了 瀏覽:812
什麼叫用安裝承諾金兌換濾芯 瀏覽:741
小合台污水處理站 瀏覽:652
污水管坡度最大值多少 瀏覽:727
噴塗機粘了樹脂怎麼辦 瀏覽:858
污水過後家裡如何消毒 瀏覽:884
水瓶邊緣水垢清潔小妙招 瀏覽:871
製作假山用什麼樹脂 瀏覽:777
農村生活污水每天排放量 瀏覽:132
日本愛情動漫電影推薦40部 瀏覽:713