導航:首頁 > 污水知識 > 當量定量計算廢水中和

當量定量計算廢水中和

發布時間:2024-06-21 03:58:08

① 地下水質的綜合指標

在水質分析中,除了測定單個組分的含量外,往往還要測定地下水的一些綜合性指標,或者根據單項指標的分析結果對地下水質的某些綜合指標進行計算。這些綜合指標不僅可以反映水的某些方面的性質,更多的則是反映了地下水質的綜合性質,現分別對其闡述如下:

(1)pH值:pH值取決於水中所含H+的多少,H+含量愈高,pH值愈低。pH值是衡量水溶液酸鹼性質的一個綜合性物理化學指標,它對化學元素在水溶液中的存在形式及地下水與圍岩的相互作用有著重要的影響。水溶液的pH值受多種因素的制約,主要包括溶液的化學成分、溫度、壓力(特別是CO2和H2S等氣體的分壓)等。在水文地球化學研究中,為了對水-岩相互作用的性質作出准確的評價,同時也為了加深對一些水文地球化學作用的理解,常需要對水溶液pH值的影響因素及其變化進行深入研究。

天然水的pH值一般在7.2~8.5之間,當pH值過高或過低時,則表示水有可能受到了污染。地表水被有機物污染時,由於有機物被氧化可產生大量的二氧化碳,可使水的pH值大大地降低。被工業廢水污染的地表水和地下水,其pH值也可發生明顯而較大的變化。

我國生活飲用水衛生標准規定飲用水的pH值應在6.5~8.5之間,pH值在此范圍之內不會對人體健康產生影響。如水的pH值過高,將會導致水中溶解鹽類的析出,使水的感官形狀惡化,而且還會降低氯化消毒的效果。當水的pH值過低時,則使水有較強的腐蝕作用,增強了水對金屬(鐵、鉛、鋁等)的溶解。

(2)氧化還原電位(Eh):氧化還原電位是表徵水體氧化還原狀態的一個綜合性物理化學指標,其單位為V或mV。天然水體中的氣體、無機物、有機物和微生物共同組成了一個復雜的氧化還原動平衡體系,氧化還原電位即是這種作用的表現和結果。水體的氧化還原條件對元素在其中的存在形態以及元素的遷移、富集和分散有巨大的影響,有一些元素在氧化環境中有較強的遷移能力,而另外一些元素則在還原條件下的水體中更容易遷移。水體的氧化還原電位對環境因素的變化很敏感,溫度、pH值以及溶解氣體含量的變化都會對其造成很大影響。因此,Eh值一般都是在現場使用鉑電極進行測定的。

(3)總溶解固體(TDS):總溶解固體是指水中溶解組分的總量,它包括了水中的離子、分子及絡合物,但不包括懸浮物和氣體。總溶解固體可通過在105~110℃下把水蒸干,對所得到的乾涸殘余物的總量進行稱重而得到,其單位為mg/L或g/L。總溶解固體常被記為TDS,表示Total Dissolved Solids。TDS除了可直接測定外,也可根據水質分析結果進行計算,方法是把所有溶解組分(溶解氣體除外)的濃度加起來再減去濃度二分之一。這里之所以要減去濃度的二分之一是因為在水樣蒸乾的過程中,約有一半的轉化成了CO2氣體而散失掉了,其反應如下(以CaCO3的沉澱為例):

水文地球化學

除了外,硝酸、硼酸、有機物等也可能損失一部分,當pH值較低時,其損失量更大一些。與此相反,可能有部分結晶水(如石膏,CaSO4·H2O)和吸著水保留在乾涸殘余物里。因此TDS的實測值與計算值常常有一些微小的差別。此外,國內外測定TDS時的蒸干溫度有時也不一致,這樣也會引起測定結果的偏差。

礦化度是我國學者過去常用的術語,其含義與總溶解固體相同。礦化度的概念來源於前蘇聯,其他國家的文獻中幾乎沒有出現過,近些年來我國供水、環境等一些部門也已改用總溶解固體一詞,如在我國新頒布的地下水水質標准中就是如此。

(4)含鹽量:含鹽量是指水中各組分的總量,其常用的單位是mg/L或g/L。該指標是計算值,它與總溶解固體的區別在於無需減去濃度的二分之一。含鹽量在灌溉水質的評價以及河流向海洋輸送風化產物的計算中經常用到。在海洋水化學研究中,常用含鹽度代替含鹽量,含鹽度的含義是海水中所有組分的含量占水的重量的千分數,以‰表示。

(5)硬度:水的硬度反映了水中多價金屬離子含量的總和,這些離子包括了Ca2+、Mg2+、Sr2+、Fe2+、Fe3+、Al3+、Mn2+、Ba2+等。與Ca2+和Mg2+相比,其他多價金屬離子在天然水中的含量一般很少,因此天然水的硬度主要是由Ca2+、Mg2+引起的。硬度通常以CaCO3的mg/L數來表示,其數值等於水中所有多價離子毫克當量濃度的總和乘以50(CaCO3的當量),除此之外,硬度常用的表示方法還有德國度、法國度和英國度等,1德國度=17.8 mg/L(CaCO3),1法國度=10 mg/L(CaCO3),1英國度=14.3 mg/L(CaCO3)。過去,我國一直用德國度來表示水的硬度,由於德國度是非法定計量單位,近年來許多部門已改用CaCO3的mg/L來表示硬度。

根據水的硬度可將其劃分為極軟水、軟水、微硬水、硬水和極硬水。具體見表1-3-1。

表1-3-1 水按硬度的分類

水的硬度隨著地區的不同通常有很大的變化,一般情況下地表水的硬度要小於地下水的硬度。地下水的硬度往往反映了它所接觸的地層岩性的性質,當表土層較厚且有石灰岩存在時,水的硬度一般較大,而軟水則一般出現在表土層較薄且石灰岩稀少或不存在的地方。

硬度可分為總硬度、碳酸鹽硬度和非碳酸鹽硬度。總硬度即是以CaCO3的mg/L數表示的水中多價金屬離子的總和,也就是前面我們所說的硬度。碳酸鹽硬度是指可與水中的結合的硬度,當水中有足夠的可供結合時,碳酸鹽硬度就等於總硬度;當水中的和不足時,碳酸鹽硬度就等於與的毫克當量數之和乘以50,也就是以CaCO3的mg/L數表示的水中的總量。碳酸鹽硬度通常被稱為暫時硬度,因為這部分硬度可與水中的結合,當水被煮沸時即可形成CaCO3沉澱而被除去。總硬度與碳酸鹽硬度之差被稱為非碳酸鹽硬度或永久硬度,它指的是與水中Cl-、等結合的多價金屬陽離子的總量,水煮沸後不能被除去。

水的硬度對日常生活和工業用水都有一定的影響。如硬水可以與肥皂發生反應,減少泡沫的形成,降低洗滌效果。高硬度水在鍋爐、熱水管道容易形成水垢,增加燃料消耗,降低熱效率,堵塞管道。近年來,人們還發現心血管疾病的發病率與水的硬度之間有負相關關系,即飲水的硬度愈低,心血管病的發病率愈高。

(6)溶解氧(DO):天然水中的溶解氧主要來源於空氣中的氧氣,故溶解氧的含量與空氣中氧的分壓、水的溫度有密切的關系。一般情況下,空氣中氧的含量變化不大,故水溫是影響溶解氧含量的主要因素,水溫愈低,水中溶解氧的含量愈高。在一個大氣壓下,0℃時大氣氧在淡水中的溶解度是14.6 mg/L,35℃時的溶解度則大約為7 mg/L。

清潔的地表水在正常情況下的溶解氧含量接近飽和狀態。水中有大量的藻類植物時,由於光合作用釋放出氧氣,可使水中含有過飽和的溶解氧。溶解氧是水中有機物進行氧化分解的重要條件,當大量有機物污染水體時,水體的溶解氧可被急劇地消耗,如其消耗速度超過氧氣從空氣中進入水體內的速度,則水中的溶解氧就會不斷地降低,甚至接近於零而呈缺氧狀態。此時水中的厭氧生物就會大量繁殖,有機物發生腐敗,使水產生臭味。因此溶解氧的含量可作為判斷水體是否受到有機物污染的間接指標。由於溶解氧參與了水中有機物的氧化分解活動,因此在同一地表水體不同斷面上測定水中溶解氧的含量,對於說明水體的自然凈化狀況具有重要意義。

溶解氧含量與水中魚類的生存有密切的關系,溶解氧含量小於3~4 mg/L時,魚類的生存就會受到嚴重的影響。

雨水經過包氣帶進入地下水面的過程中,溶解氧可被包氣帶中的有機物和還原性無機物所消耗,所以地下水中的溶解氧含量一般較低。

(7)生化需氧量(Biochemical Oxygen Demand,BOD):生化需氧量是指水體中的微生物在降解水中有機物的過程中所消耗的氧的量,以mg/L表示。BOD的測定實質上是一個氧化過程,在該過程中,把一定量的有機物氧化為二氧化碳、水和氨氣所需氧的量是確定的,這種關系可表示為:

水文地球化學

微生物在這里只起到了一種中間介質的作用。

BOD測試中的氧化反應是生物活動的結果,其完成的程度是由溫度和時間所決定的。為了使測定的BOD值具有可比性,通常採用20℃下培養5天的測定結果來標定BOD,並將其記為BOD5。對於大多數的天然水體來說,20℃一般是一個平均溫度。但應明確5天還遠未達到有機物完全氧化的時間。從理論上講,有機物通過生物完全氧化所需的時間是無限的,但從實用角度來看,可認為20天後反應就進行完畢了。即便如此,20天對於大多數情況都是一個太長的等待時間。人們之所以選擇5天的培養時間是因為BOD5在總BOD中已經佔到了相當大的比例,對於生活和工業廢水來說,可佔到總BOD的70%~80%,而且選擇5天的培養時間也可使氨氧化的影響達到最小。

BOD是一個確定生活和工業廢水污染程度時廣泛使用的指標,在河流污染控制的研究中,BOD的測試非常重要。在制定和規劃水體對廢水的凈化容量時,也需要對BOD進行測定。

(8)化學需氧量(Chemical Oxygen Demand,COD):化學需氧量是指採用化學氧化劑氧化水中有機物和還原性無機物所需消耗的氧的量,單位為mg/L。在COD的測定過程中,無論有機物能否被生物所降解,它都被氧化劑氧化成了二氧化碳和水。因此COD一般要大於BOD。COD測定的最大缺點就是它不能對生物可降解與生物不可降解的有機質進行區分,而且它不能提供可降解有機物在天然條件下達到穩定狀態的任何速度信息。其優點是測定所需的時間短,只需要三個小時,因此在很多情況下都用COD來代替BOD。在同時積累了很多COD和BOD資料,並且建立了它們之間相關關系的情況下,可用BOD值對COD資料進行解釋。

高錳酸鉀(KMnO4)、重鉻酸鉀(KCr2O7)和碘酸鉀(KIO3)是測定水中COD的三種常用的氧化劑。對於不同的化合物,高錳酸鉀的氧化變化較大,氧化的程度受到了試劑強度的很大影響。所測定的COD值經常比BOD5小很多。這種情況表明高錳酸鉀氧化的終點很不確定。重鉻酸鉀是這三種氧化劑中測定效果最好的一種,它可以把大多數種類的有機物完全氧化為二氧化碳和水。由於氧化過程中所有的氧化劑都必須過量使用,所以氧化反應結束後必須測定多加入的氧化劑的量,在這一方面重鉻酸鉀也比其他氧化劑相對容易測定一些,這也是重鉻酸鉀廣泛使用的另一個原因。為了便於對COD測定結果的比較,使用此COD時應註明其分析方法。

一些有機物,如低分子量脂肪酸必須加催化劑才能被重鉻酸鉀所氧化,銀離子是一種很有效的催化劑。芳氫和吡啶在任何情況下都不能被氧化。

(9)總有機碳(Total Organic Carbon,TOC):總有機碳是水中各種形式有機碳的總量,以mg/L表示。TOC可通過測定高溫燃燒所產生的二氧化碳來確定,也可使用有關測試儀器進行測定。由於燃燒法的測定程序較為繁瑣,而且難以排除無機碳的干擾,而儀器測試法又比較昂貴,所以在以往的水質分析結果中,TOC的資料很少。

(10)鹼度(Alklinity):鹼度是表徵水中和酸的能力的一個綜合性指標。天然水的鹼度主要由水中的弱酸鹽類所引起,當然弱鹼和強鹼對其也有一定的貢獻。一般情況下,碳酸鹽和重碳酸鹽是鹼度的主要組成部分。其他的弱酸鹽,如硼酸鹽、硅酸鹽和磷酸鹽的含量通常很少。極少數的有機酸,如腐殖酸所形成的鹽類也對天然水的鹼度產生影響。在受污染或缺氧的水體中,可形成醋酸、丙酸及氫硫酸,它們對鹼度也產生一定的貢獻。雖然很多物質都對天然水的鹼度有影響,但水的鹼度主要由三類物質所引起,這些物質是氫氧化物、碳酸鹽和重碳酸鹽。

鹼度一般使用N/50的硫酸H2SO4通過滴定法來測定,並且用CaCO3的mg/L數來表示。當樣品的初始pH值大於8.3時,滴定分為兩步。第一步滴定到pH值等於8.3,該點可由酚酞由粉紅變為無色來確定。第二步滴定到pH值大約等於4.5,與甲基橙終點相對應。當樣品的pH值低於8.3時,只需要後一步就夠了。在第一步中選擇pH=8.3作為終點,是因為該pH值對應於轉化為的當量點。而第二步中的pH=4.5則大致對應於轉化為H2CO3的當量點。

由碳酸鹽和重碳酸鹽所引起的鹼度通常被稱為碳酸鹽鹼度。碳酸鹽鹼度可根據水質分析結果來進行計算,其方法是用50乘以和的毫克當量濃度之和。

(11)酸度(Acidity):酸度是水中和鹼的能力的一個綜合性指標。組成水中酸度的物質可歸納為三類:①強酸,如 HCl、HNO3、H2SO4等;②弱酸,如 CO2、H2CO3、及各種有機酸等;③強酸弱鹼鹽,如FeCl3、Al(SO43等。水中這些物質對強鹼的總中和能力稱為總酸度。總酸度與水中的氫離子濃度並不是一回事,氫離子濃度表示水中呈自由離子狀態的H+數量,而總酸度則表示了中和過程中可與強鹼反應的全部H+數量,其中包括了已電離的和將要電離的兩部分。已電離的H+數量稱為離子酸度,其負對數值即等於水溶液的pH值。與鹼度一樣,酸度也是常用CaCO3的mg/L數來表示的。

② 環境分析方法的方法

主要方法有化學分析法,儀器分析法,生物分析法和分子生物學檢驗法。其中化學分析法分為質量分析法、 滴定分析法。儀器分析法分為光學分析法、電化學分析法、 色譜分析法、質譜分析法等。 重量分析法,定量分析中的一種經典方法。18世紀中葉,羅蒙諾索夫首先使用天平稱量法,對物質在化學變化中量的改變進行了測定,並證明了質量守恆定律,實際上為定量分析中的重量分析法奠定了基礎。重量分析法要求有精密的分析天平,19世紀分析天平稱量准確度達0.1毫克;20世紀出現了微量分析天平和超微量分析天平,稱重的准確度分別達到 0.001和0.0001毫克,擴大了重量分析的應用范圍。
重量分析法是准確地稱量出一定量試樣,然後利用適當的化學反應把其中欲測成分變成純化合物或單體析出,採用過濾等方法與其他成分分離,經乾燥或灼燒後稱量,直至恆重,求出欲測成分在試樣中所佔比例。除了這種直接測定法外,還可採用間接測定法,即將試樣中欲測成分揮發掉,求出揮發前後試樣重量差,從而求得欲測成分的含量。重量分析法根據所用分析操作的方法分為沉澱法、均相沉澱法、電解法、氣體發生(吸收)法和萃取法等。在環境污染物分析中,重量法常用於測定硫酸鹽、二氧化硅、殘渣、懸浮物、油脂、飄塵和降塵等。重量分析法廣泛應用於化學分析。隨著稱量工具的改進,重量分析法也不斷發展,如近年來用壓電晶體的微量測重法測定大氣飄塵和空氣中的汞蒸汽等。 容量分析法,又稱滴定法,是一種經典的方法。19世紀初期,L.蓋呂薩克提出了氣體定律,奠定了氣體容量分析方法的理論基礎。後來,他把測量氣體和液體體積的分析方法應用於實際。容量分析法是利用一種已知濃度的試劑溶液(稱為標准溶液)與欲測組分的試液發生化學反應,反應迅速而定量地完成(即達到反應終點)後,根據所用標准溶液的濃度和體積(從滴定管上讀取)及其當量關系,算出試液中欲測組分的含量。終點的鑒定除利用指示劑的變色目視鑒定外,還可應用各種儀器的方法來鑒定,如電位滴定法、光度滴定法、高頻滴定法、電流滴定法、電導率滴定法、溫度滴定法等。近年來在容量分析中已採用各種型式的自動滴定儀。
容量分析的優點是操作簡便,迅速、准確,費用低,適用於常規分析。根據所利用的反應種類,容量分析法可分為中和滴定法、氧化還原滴定法、沉澱滴定法、絡合滴定法等。在環境污染分析中,容量分析法應用於生化需氧量、溶解氧、化學需氧量等水污染常規分析指標分析,以及揮發酚類、甲醛、氰化物、氟化物、硫化物、六價鉻、銅離子、鋅離子等污染物的分析。 根據試液顏色深淺的程度,把試液與顏色深淺程度不同的已知標准溶液相比較,來確定物質含量的方法。
1729年P.包蓋爾提出了包蓋爾定律,即組成相同的呈色溶液,如液層厚度相等時,則色的強度相同。1760年J.H.朗伯特提出與包蓋爾定律近似的朗伯特定律,即濃度相同的呈色溶液,色的強度與液層的厚度成比例。1852年A.比爾提出了比爾定律,即液層厚度相等時,色的強度與呈色溶液的濃度成比例。這些定律奠定了比色分析法的理論基礎。1854年J.迪博塞克和J.奈斯勒等將這些理論應用於定量分析化學領域。1873年C.維洛特首先應用分光光度法以進行光度分析。光度法不像比色法那樣比較呈色溶液顏色的強度,而是測定呈色溶液的透光度或吸光度。1874年Н。Г。葉戈羅夫首先將光電效應用於比色分析,他所設計的光電光度計就是現代光電比色計的雛型。1894年出現了浦夫立許光度計;1911年出現了貝爾格光電比色計;1941年出現了貝克曼DU型分光光度計。後來又出現自動記錄的分光光度計、示波器分光光度計、雙波長分光光度計和數字顯示分光光度計等。光度法的靈敏度和准確度不斷提高,應用范圍也不斷擴大。
比色分析法如以肉眼觀察比色管來比較溶液顏色的深淺以確定物質含量的,稱為目視比色法。利用光電池和電流計來測量通過有色溶液的透射光強度,從而求得被測物質含量的方法叫作光電比色法;所用的儀器稱為光電比色計。 比色法和分光光度法以朗伯特-比爾定律(亦稱光的吸收定律)為基礎,即溶液的吸光度與溶液中有色物質的濃度及液層厚度的乘積成正比例。其數字關系式為lg(Io/I)=K·C·L。式中Io為入射光的強度;I為透射光的強度;L為光線通過有色溶液的液層厚度;C為溶液中有色物質的濃度;K為常數(對於某種有色物質在一定波長的入射光時,K為一定值),稱為消光系數(也稱吸光系數)。K值的大小隨L和C的單位而改變,如果L以厘米表示,C以摩爾/升為單位,則此常數稱為摩爾吸光系數(或摩爾消光系數),常以ε表示。
比色分析法的主要優點是准確、靈敏、快速、簡便而費用又低。測定物質的最低濃度一般可達每升10-10克,如經化學法富集,靈敏度還可提高2~3個數量級。測定的相對誤差通常為1~5%。
比色分析法和分光光度法在環境污染分析中已被普遍採用,但污染物必須先與顯色試劑作用轉化成有色化合物後才能進行測定。目前已研製出各種效果良好和非常靈敏的有機顯色劑。金屬離子、非金屬離子和有機污染物均可用這種方法測定。 利用化學物質在紫外光區的吸收與紫外光波長間的函數關系而建立起來的分析方法。紫外光譜的波長范圍可分為近紫外區(200~400纖米)和遠紫外區(10~200纖米),前者常用於化學分析,後者因空氣吸收波長在 200纖米以下的紫外線,測量須在真空中進行,所以在分析上較少應用。
分子吸收紫外輻射常是其外層電子或價電子被激發的結果。電子愈易激發,則吸收峰的波長就愈長。
紫外分光光度計一般用氫燈做輻射源,用石英棱鏡或光柵做單色器,用光電倍增管做檢測器。吸收池的材料一般為石英或硅石,長度為 1~10厘米。若用氘代替氫,其發射強度在紫外區短波長處可增加三倍。
簡單的無機離子和它的絡合物以及有機分子,可在紫外光譜區進行檢定和測量。有效的溶劑有水、飽和碳氫化合物、脂族醇和醚。能吸收紫外輻射的有機化合物至少要含有一個不飽和鍵,如C=C,C=O,N=N以及S=O,以起發色團的作用。吸收峰的波長隨著發色團的不飽和程度的增大而增長。一些化合物及其最大吸收波長如右表所示。
紫外分光光度法在環境污染分析方面的應用主要有以下幾方面:①在大氣污染分析中真空紫外線氣體分析儀已應用於分析汽車廢氣;紫外氣體分析儀可應用於分析臭氧、二氧化氮、氯氣。氣態氨在190~230纖米波長上有幾條強烈的吸收帶,可用於直接測定氨氣的濃度。②某些多環芳烴和苯並(a)芘在紫外區有強吸收峰,常用此法測定。③某些含有共軛體系的油品在紫外光區具有特徵吸收峰,故可用此法測定油類污染。④此法還可用於測定食物、飲料、香煙、水質、生物、土壤等試樣中可能含有的致癌物質,以及殘留農葯、硝酸鹽和酚等。⑤此法也可與色譜分析聯用,待測試樣先經色譜柱,然後讓色譜柱洗脫液流經紫外分光光度計的吸收槽以檢測試樣所含的痕量污染物。近年來迅速發展起來的高速液相色譜儀均配備有紫外檢測器。 也叫紅外光譜分析法,是一種儀器分析方法。物質在紅外光照射下,只能吸收與其分子振動、轉動頻率相一致的紅外光線,因此不同物質只能吸收一定波長的入射光而形成各自特徵的紅外光譜,而對一定波長紅外線吸收的強弱則與物質的濃度有關。根據這一原理可進行物質定性、定量分析及復雜分子的結構研究。
在環境分析化學中,紅外分光光度法主要用於 450~1000厘米-1紅外區有吸收的氣體、 液體和固體污染物。在測定大氣污染時,採用多次反射長光程吸收池和傅里葉變換紅外光譜儀,可測ppm至ppb級濃度的易揮發性氣體(乙炔、胺、乙烯、甲醛、氯化氫、硫化氫、甲烷、丙烯、苯、光氣等)。在大氣中發現的一種新化合物過氧乙醯硝酸酯,就是經過紅外光譜法和質譜法的鑒別後確定的。用紅外光譜法還發現了美國洛杉磯空氣中有臭氧存在。用傅里葉變換紅外光譜可測定水中濃度在1ppb以下的有機污染物和農葯。與質譜法相比,紅外光譜法可以很容易地區分污染物的各種異構體。紅外光譜法是鑒別水中石油污染的主要方法之一。紅外光譜法可用於大氣污染化學反應的測定。氣相色譜-紅外光譜聯用技術可以測定低沸點、易揮發的有機污染物。由於利用了氣相色譜的分辨能力,突破了紅外光譜法原來只適用於純化合物的限制,因此氣相色譜-紅外光譜聯用也能應用於混合物的測定。 利用元素的原子蒸汽(火焰或石墨爐產生)吸收銳線光源(空心陰極燈或無極放電燈)的光進行定量分析的方法。主要優點:①選擇性好,干擾少,在分析復雜環境樣品時容易得到可靠的分析數據。②儀器操作簡便,費用較低。③靈敏度高,可用於微量樣品分析。用火焰原子吸收法可測定樣品含量至毫克每升級,用石墨爐法可測至微克每升級,靈敏度高於高頻耦合等離子體法。④測定含量范圍廣,既能進行痕量元素分析,又能測定基體元素的含量。穩定的原子吸收分光光度計,其准確度能達到0.1~0.3%,可與經典容量法相比擬。
原子吸收光譜法加測汞和氫化物發生器等附件,測定靈敏度可比石墨爐更高,汞、砷、硒、碲、鉍、銻、鍺錫、鉛的測定范圍可提高1~2個數量級。原子吸收光譜法已廣泛用於測定水、飄塵、土壤、糧食以及各種生物樣品中的重金屬元素。用原子吸收光譜法測定的元素已達七十多種。原子吸收光譜法中以火焰法比較成熟,使用最多,但對於環境樣品,分析靈敏度還不夠高。石墨爐法雖不夠成熟,卻是一種靈敏度很高的分析手段。
原子吸收光譜法的缺點是:①測定每種元素都要更換專用的燈,不能同時作多元素分析。②各種干擾作用比高頻耦合等離子體法更大。③對共振線位於真空紫外區的元素測定有困難。④對固體樣品的測定比較困難。⑤對某些高溫元素如鈾、釷、鋯、鉿、鈮、鉭、鎢、鈹、硼等的測定靈敏度太低。 利用原子蒸汽在電或熱的激發下產生的光譜,通過光譜儀照相記錄或光量計直接讀數的定量分析方法。主要特點是能一次同時測定多種金屬元素,選擇性好,干擾少,能直接分析液體和固體樣品,適合於定性和多種元素定量分析。分析范圍液體為毫克/升到微克/升,固體分析靈敏度為1%至0.001%。採用化學分離富集後再行測定,可提高靈敏度 1~2個數量級。在環境保護中可用於分析水、飄塵、土壤、糧食以及各種生物樣品等。缺點是要用照相干板記錄,分析周期長;對於超痕量元素的定量分析,靈敏度不夠;直接分析固體樣品時,誤差較大。
傳統的發射光譜分析,是用溶液干渣法分析溶液,碳槽粉末法分析固體;以交流電弧或直接電弧作為激發光源;使用中型石英光譜儀或光柵光譜儀,照相干板記錄。基體影響將使分析誤差加大。最近,在溶液干渣法中引入鋰鹽為緩沖劑,使基體影響減少,分析准確度大大提高,因而發射光譜法在一定程度上成為一種通用的定量分析方法。碳槽粉末法由於工作曲線斜率低,誤差大,還未能成為通用的定量分析方法。
近年來,發展了直流和高頻耦合等離子體光源,結合使用光電記錄,提高了分析的精度、靈敏度和速度,減少了基體效應,有較好的再現性,較寬的線性動態范圍,並可同時測定多種元素,是一種新的分析手段。但高頻耦合等離子體為光源的儀器價格昂貴,氬氣消耗量大,分析成本高,對於環境樣品的分析靈敏度不夠。直流等離子體光源的靈敏度雖不及高頻耦合等離子體光源,但儀器價格低,氬氣消耗小,對人體健康影響小,所以近年來發展很快。 X射線熒光分析的基本原理是以高能X射線(一次X射線)轟擊樣品,將待測元素原子內殼層的電子逐出,使原子處於受激狀態,10-12~10-15秒後,原子內的原子重新配位,內層電子的空位由較外層的電子補充,同時放射出特徵X射線(二次X射線)。特徵X射線波長λ和原子序數Z有一定關系:λ ∝1/Z2。測定這些特徵譜線的波長或能量可作定性分析;測量譜線的強度,可求得該元素的含量。
X射線熒光分析法所用的激發源有X射線管、放射性同位素、電子、質子或α 粒子等。測定方法有波長色散法和能量色散法兩種。波長色散法是一種經典方法。能量色散法採用Si(或Li)半導體探測器和多道分析器,可同時測定鈉以上的全部元素,它的解析度比波長色散法低些,但能適用於多元素分析。
X射線熒光分析法具有快速、准確、 測定范圍寬、能同時測定多種元素、自動化程度較高和不破壞樣品等優點,故已廣泛地應用於環境污染監測。如測定大氣飄塵中痕量金屬化合物;藉助電子計算機,自動監測大氣飄塵以及大氣中二氧化硫和氣溶膠吸附的硫,也適用於測定各種水體懸浮粒子中的重金屬以及溶解於水中的痕量元素。 物質吸收了某一波段的光線(激發光)後,引起能級躍遷,發出波長比激發光的波長稍長些的光線,這種光線稱為熒光。測量熒光光譜特性及其強度以確定該物質及其含量的方法,稱為熒光分析法。如被測樣品的濃度很低,其熒光強度便與物質的濃度成正比,根據這種特性,可以進行物質的定量分析;不同物質具有不同的熒光激發光譜和發射光譜,根據光譜的特性可以進行物質的定性分析。特別是熒光分光光度計能得到兩種光譜(激發光譜和發射光譜),用這兩種光譜圖鑒定物質,比使用吸收光譜法更為可靠。
熒光分析所用的儀器有目測熒光計、光電熒光計和熒光分光光度計等。每種儀器均由光源、濾光片或單色器、液槽和探測器等部件組成。
熒光分析法的靈敏度很高,比一般的分光光度法高2~3個數量級,能檢測10-11~10-12克的痕量物質。熒光分析法還具有實驗方法簡便、取樣容易、試樣用量少等優點,因而是一種重要的分析技術。目前用熒光分析法測定的元素已達60多種,化合物數百種。在環境污染分析中,熒光分析法已被廣泛地應用於測定致癌物和其他毒物,如苯並(a)芘等多環芳烴、β-萘胺、黃麴黴毒素、農葯、礦物油、硫化物、硒、硼、鈹、鈾、釷等。 氣相色譜-質譜聯用技術(GC-MS)
由氣相色譜儀與質譜儀結合使用的一種新型完整的分析技術,可進行復雜混合化合物的定性定量分析。通常還配備電子計算機,以構成氣相色譜-質譜-計算機系統。氣相色譜儀與質譜儀的結合,中間大多要經過一界面裝置(分子分離器),解決色譜柱出口(通常為常壓)與質譜儀離子源(真空度為10-4~10-7)之間的壓降過渡的問題;分子分離器還能對進入質譜儀的色譜餾分起到濃縮作用。但毛細管柱色譜儀與質譜儀的結合也有採取不經分子分離器的直接耦合方式。一般採用的分子分離器有噴嘴、多孔玻璃、多孔銀、多孔不銹鋼、聚四氟乙稀毛細管、硅橡膠隔膜、導通率可變的狹縫、塗有硅酮的銀-鈀合金管、膜片-多孔銀等類型。試樣餾分隨載氣進入分子分離器時,由於餾分分子量與載氣分子量相差較大,空間擴散能力不同,從而在大抽速泵的抽力下大部分載氣與試樣餾分在分子分離器里得到分離。典型的雙噴嘴式分子分離器見圖3,氣相色譜-質譜聯用裝置示意圖見圖 4。
質譜儀是用以分析各種元素的同位素並測量其質量及含量百分比的儀器。它是由離子源、分析器和收集器三個部分組成。用於氣相色譜-質譜聯用技術的質譜儀有磁式質譜儀和四極矩質譜儀兩種類型。前者分辨本領高(R=1000~150000),靈敏度也高(10-9~10-13克),而且質量范圍較寬,並可增設峰匹配、亞穩技術等功能,但掃描速度不如後者。四極矩質譜儀靈巧輕便,掃描速度快,特別適合於毛細管柱色譜窄峰情況,但分辨本領一般只能達到R=1000~3000,而且質量范圍窄,存在質量歧視效應。氣相色譜-質譜聯用技術中經常用到的質譜技術有:①電子轟擊技術,用來了解樣品的結構信息和分子組成,是質譜中最為常用的技術。②化學電離技術,可獲得電子轟擊技術無法獲得的某些化合物的分子信息。③單離子檢測技術,對被測化合物的特徵離子質量進行單離子檢測可得到高信噪比質量色譜圖,靈敏度比掃描全部譜圖質量范圍高2~3個數量級,同時可對未得到分辨開的色譜峰進行甄別。此法對可疑色譜峰的鑒別尤其有用。與氣相色譜的保留值相結合可直接給出可靠的定性結果。④質量碎片技術,通過跳躍掃描技術同時掃描所選定的多個特徵離子。這項技術專一性強、靈敏度比總離子流高2~3個數量級(一般可達10-10~10-12克)。與計算機相結合可發展為強度匹配技術和計算機化的質量碎片技術。
用於氣相色譜-質譜聯用的氣相色譜技術與普通氣相色譜技術不同之處在於:對載氣流率和固定液的流失更為敏感。因受質譜儀真空度所限,載氣流率不易達到最佳化,同時,在載氣種類的選擇上,由於分子分離器原理的要求,只能選取那些擴散系數與樣品化合物相差甚遠的輕質量氣體。一般多採用氦或氫。用於氣相色譜-質譜聯用的色譜柱固定液分離效率要高,熱穩定性要好,固定液在柱中的含量要低,以保證高效低流失。常用的固定液有:SE-30,SE-52,SE-54,OV-1,F-60,QF-1,Dexsil 300,Dexsil 400,PPE-20,SF-96等類型。最近石英毛細管彈性柱也廣泛用於氣相色譜-質譜聯用技術中。
在氣相色譜-質譜聯用技術中的計算機系統能對採集的信息進行數據處理,並可將測定譜與儲存於計算機內的標准譜圖庫進行對照檢索,並自動給出最終測定結果。
氣相色譜-質譜聯用技術在環境分析中用於測定大氣、降水、土壤、水體及其沉積物或污泥、工業廢水及廢氣中的農葯殘留物、多環芳烴、鹵代烷以及其他有機污染物和致癌物。此外,還用於光化學煙霧和有機污染物的遷移轉化研究。
氣相色譜-質譜聯用技術在環境有機污染物的分析中佔有極為重要的地位,這是因為環境污染物試樣具有以下特點:①樣品體系非常復雜,普通色譜保留數據定性方法已不夠可靠,須有專門的定性工具,才能提供可靠的定性結果。②環境污染物在樣品中的含量極微,一般為ppm至ppb數量級,分析工具必須具有極高靈敏度。③環境樣品中的污染物組分不穩定,常受樣品的採集、儲存、轉移、分離以及分析方法等因素的影響。為提高分析的可靠性和重現性,要求分析步驟盡可能簡單、迅速,前處理過程盡可能少。氣相色譜-質譜聯用技術能滿足環境分析的這些要求。它憑借著色譜儀的高度分離本領和質譜儀的高度靈敏(10-11克)的測定能力,成為痕量有機物分析的有力工具。美國使用質譜儀發現了大氣中的過氧乙醯硝酸酯和二氧雜環丙烷的痕跡。 極譜分析法,是根據極譜學的原理建立起來的分析方法。這種分析法是將一面積極小的滴汞電極和一面積較大的去極化電極浸於待測溶液中,逐漸改變二極間的外加電壓,從而得到相應的電流-電壓曲線(極譜圖)。通過對電流-電壓曲線的分析和測量,即可求得試液中相應離子的濃度。
傳統的極譜分析法,靈敏度一般在10-4~10-5摩爾范圍內。近些年來提出了許多新的極譜分析方法。其中應用比較廣泛的有示波極譜法、方波極譜法、脈沖極譜法以及極譜催化法和反向溶出伏安法等。其中反向溶出伏安法在環境分析中使用較多。
反向溶出伏安法又稱為陽極溶出法。這種方法是使被測物質在適當的條件下電解富集在微電極上,然後改變電極的電勢,使富集的物質重新溶出。根據電解溶出過程所得到的極化曲線進行分析。這種方法的靈敏度很高,一般可以達到 10-7~10-10摩爾,可用來測定天然水、海水、生物樣品中的銅、鉛、鎘、銦、鉈、鉍、砷、硒、錫等元素。 根據溶液電導的變化進行測定的電分析方法。在水質監測中,水的電導率是評價水體質量的一個重要指標。它可以反映水中電解質污染的程度,是水質監測中的常測項目。
電導分析法也可以用來測定水中的溶解氧。由於一些非電導元素或化合物可以與溶解氧反應產生離子而改變溶液的電導性,因此可通過測量水體的電導變化來確定水中溶解氧的含量。例如金屬鉈與水中溶解氧反應產生Tl+離子和OH-離子,每增加0.035微西/厘米的電導率(西是西門子,電導單位),相應為1ppb的溶解氧。
大氣中的二氧化硫也常用電導法測定。其原理如下:二氧化硫與水反應生成亞硫酸,其中一部分離解生成氫離子和亞硫酸根離子,呈導電性:
SO2+H2O─→H2SO3
H2SO3匑2H++SO卲
因此使氣體樣品與具有一定電導的溶液以一定比例接觸,通過吸收二氧化硫後溶液電導的增加,就可以連續測定氣體樣品中二氧化硫的含量。此法測量范圍較大,但如果氣體樣品中含有溶於水並會產生電導性的其他氣體,則會影響測定結果的正確性。 包括電位滴定法和直接電位法。電位滴定法是一種儀器分析方法,是電容量分析法。這種方法是以某種能與被測物質反應的標准溶液滴入試液中,並在滴定過程中觀察指示電極電位的變化,根據反應達到等當點時待測物質濃度的突變所引起的電位突躍,來確定滴定終點,從而進行定量分析。此法可用於環境分析中工業廢水的酸鹼滴定、氧化還原滴定、沉澱滴定和絡合滴定等。直接電位法是通過直接測量對待測試液中離子濃度產生響應的指示電極的電位,來進行定量分析的。水質監測中pH值和氧化還原電位的測定都採用直接電位法。
近年來由於離子選擇性電極的產生和發展,使直接電位法在環境監測中得到了更廣泛的應用。例如,應用氟離子選擇性電極測定大氣、天然水和工業廢水中的氟離子,具有快速、准確、方便、靈敏等優點。氰離子選擇性電極、硝酸根電極、鹵族離子和硫離子等電極也都在環境監測中得到了應用。
固態膜鉛離子和鎘離子選擇性電極可以測定 10-7摩爾鉛離子和鎘離子。在實驗室內已開始應用於水、空氣、食品、生物樣品中鉛和鎘的測定。
用於直接電位法的離子選擇性電極種類頗多,中國研製和生產的電極有20多種,其中有些已應用於環境監測和污染控制。 在電解分析基礎上發展起來的一種電化學分析方法。它是通過測量電解反應所消耗的電量來計算結果的。庫侖分析法的基礎是法拉第電解定律。在電流作用下進行電極反應的物質的量與通過電解池的電量成正比。每通過 1法拉第電量,在電極表面即沉積或溶出1克當量的物質。若反應物質的分子量或原子量為M,電極反應時電子轉移數為n,通過電解池的電量為Q,則被測物質的重量W 即可由法拉第定律計算出來:(圖1)
在庫侖分析中,被測物質可以在控制電位下直接在電極上發生反應,也可以利用某種輔助物質在恆電流作用下在電極上發生反應,產生一種庫侖中間體,再與被測物質作用。前者稱為控制電位庫侖分析,後者一般叫做恆電流庫侖滴定。庫侖分析法在環境監測中應用較多。大氣中的二氧化硫、一氧化碳、氮氧化物、臭氧和總氧化劑,水中的生化需氧量、化學需氧量、鹵素、酚、氰、砷、錳、鉻等都可以用此法測定。

③ 紕卞害瀹為獙嫻嬪畾

鍦ㄨ繘琛岀⒈搴﹀疄楠屾祴瀹氭椂錛岄栧厛瑙傚療閰氶厼鎸囩ず鍓傜殑鍙樺寲銆傚綋婧舵恫鐢辯孩鑹插彉涓烘棤鑹詫紝pH鍊艱揪鍒8.3錛屾剰鍛崇潃姘㈡哀鏍圭誨瓙(0H-)宸蹭笌婧舵恫涓鐨勯吀鎬х墿璐ㄥ畬鍏ㄤ腑鍜岋紝紕抽吀鐩愯漿鍖栦負閲嶇⒊閰哥洂錛岃繖涓闃舵電殑嫻嬪畾緇撴灉琚縐頒負鈥滈厷閰炵⒈搴︹濄


榪涗竴姝ユ淮瀹氾紝褰撶敳鍩烘欐寚紺哄墏鐢遍粍鑹插彉涓烘欑孩鑹叉椂錛宲H鍊奸氬父鍦4.4-4.5錛岃〃鏄庢墍鏈夐噸紕抽吀鐩愶紝鍖呮嫭鍘熸湁鐨勫拰鐢辯⒊閰哥洂杞鍖栫殑錛屼篃宸茶涓鍜岋紝榪欎竴緇撴灉縐頒負鈥滄葷⒈搴︹濄傞氳繃璁$畻錛屽彲浠ヤ簡瑙f憾娑蹭腑紕抽吀鐩愩侀噸紕抽吀鐩愬拰姘㈡哀鏍圭誨瓙鐨勫叿浣撳惈閲忋傜劧鑰岋紝瀵逛簬搴熸按鍜屾薄姘達紝鐢變簬鎴愬垎澶嶆潅錛岃繖縐嶇洿鎺ョ殑璁$畻騫朵笉閫傜敤銆


鍦ㄩ灒鍒跺伐鑹轟腑錛岄灒鎬х粶鍚堢墿鐨勭⒈搴︽槸涓涓鍏抽敭鎸囨爣錛屼互鏃犳満闉e墏涓璒H鍩虹殑鎬誨綋閲忔暟涓庨摤鐨勬誨綋閲忔暟涔嬫瘮鐨勭櫨鍒嗘瘮琛ㄧず銆傜⒈搴﹁秺楂橈紝琛ㄦ槑鍒嗗瓙緇撴瀯杈冨ぇ錛屼笌鐨錏嬬櫧璐ㄧ粨鍚堣兘鍔涜秺寮猴紱鍙嶄箣錛岀⒈搴︿綆鍒欒〃紺哄垎瀛愬皬錛屼笌鐨錏嬬櫧緇撳悎寮憋紝娓楅忔ц緝濂姐傛帉鎻″ソ紕卞害瀵逛簬闉e埗宸ヨ壓鐨勫悎鐞嗗疄鏂借嚦鍏抽噸瑕併


鍦ㄦ搗媧嬪︿腑錛岀⒈搴﹀垯鐢ㄦ潵琛¢噺嫻鋒按涓寮遍吀闃寸誨瓙鐨勬誨惈閲忋傚畾涔変負錛20鈩冩椂錛屾瘡絝嬫柟鍒嗙背嫻鋒按涓寮遍吀闃寸誨瓙鍏ㄩ儴閲婃斁鎵闇鐨勬阿紱誨瓙鏁伴噺錛岀敤絎﹀彿鈥淎lK鈥濇垨鈥淎鈥濊〃紺恆傜熆鐭崇殑紕卞害鍒欓氳繃CaO涓嶮gO鐨勬瘮渚嬩笌Si02鍜孉l2O3鐨勬瘮渚嬫潵琛¢噺錛屽皬浜0.8鐨勭熆鐭寵璁や負鏄閰告э紝0.8鑷1.2鐨勪負鑷鐔旀э紝澶т簬1.2鐨勪負紕辨с


鎵╁睍璧勬枡

紕卞害鏄琛ㄥ緛姘村惛鏀惰川瀛愮殑鑳藉姏鐨勫弬鏁幫紝閫氬父鐢ㄦ按涓鎵鍚鑳戒笌寮洪吀瀹氶噺浣滅敤鐨勭墿璐ㄦ婚噺鏉ユ爣瀹氥

閱讀全文

與當量定量計算廢水中和相關的資料

熱點內容
不下載看片網站 瀏覽:609
國外電影的軟體 瀏覽:615
湖南光氧污水除臭多少錢 瀏覽:706
國產ro膜哪個品牌最好 瀏覽:792
與朴銀狐合作的女演員 瀏覽:508
1979自衛反擊戰電影 瀏覽:986
咱的電影網mp5 瀏覽:537
孩子的夢想電影完整版 瀏覽:998
朱藝彬交換的一天 瀏覽:625
美國床片 瀏覽:477
皮廢水外理 瀏覽:232
寶典柴油濾芯放了水怎麼排空 瀏覽:436
德國as集團污水處理 瀏覽:977
反滲透小分子團富氫水機廠家 瀏覽:967
韓國最美三經電影有哪些 瀏覽:143
碧然德濾芯怎麼洗 瀏覽:75
邵氏電影顏色程度最高的 瀏覽:283
丹麥污水提升泵 瀏覽:29
蘇州醫院廢水處理公司 瀏覽:3
啄木鳥劇情全部系列有哪些 瀏覽:947