❶ 什麼叫吹脫法除氨氮的原理是什麼
氨氮在水中通常有兩種存在形式:NH4+,NH3,有下列平衡關系
NH4+ + OH- → NH3 + H2O
加鹼使銨根離子轉回化為氨氣,大答量曝氣,促使NH3由液相傳遞到氣相中帶走,從而達到去除氨氮的目的。
❷ 吹脫法處理高濃度氨氮廢水,為什麼要加入石灰
高濃度氨氮廢水對微生物有一定的抑製作用,但N同時又是微生物生長版的一種不可缺少權的營養元素。
氨氮廢水的處理主要有以下的方法:
如果氨氮超高的話,可先加氫氧化鈉調節水PH11左右,通過氨氮吹脫塔用空氣吹脫,去除率可達80%左右,當然僅僅通過這樣的方法無法處理達標,還需後續處理。剩餘的氨氮可以通過脫氮的污水處理工藝進行去除:比如說A/O、A/AO、SBR等活性污泥法,以及曝氣生物濾池生物轉盤的生物膜法進行處理。
❸ 高氨氮廢水吹脫後ph為多少不再需要加酸調節ph可直接進生化處理
A/O工藝最為理想,1樓說的高效氨氮吹脫回收塔、超聲波氨氮處理槽和反滲透處理氨氮廢水裝置成本太高,特別是超聲波氨氮處理槽和反滲透處理氨氮廢水裝置
❹ 高氨氮廢水處理工藝
根據復你給的一些其他制數據,我說點個人看法:
1.生化性不錯,但氨氮進水濃度比較高,出水要求氨氮為15,所以建議使用A/O
2.廢水進入A/O前考慮作預處理,比如吹脫,考慮到不造成2次污染,可以加一尾氣吸收裝置
3.看產品的情況,廢水本身很可能是鹼性的,在此基礎上調節作吹脫,也可以節約部分葯劑成本
4.COD本身生化性比較好,一般情況下問題不大,在吹脫後的情況下,氨氮倒50~100一下不難,後續A/O在正常運行的情況下達到排放標准不難
5.如果不用吹脫,直接500多濃度的氨氮進行生化處理,壓力太大,雖然實際運行中有處理好的案例,但不夠保險,故實際選擇還是看自身情況
❺ 高氨氮廢水的最佳處理方式
1 物化法 1.1 吹脫法在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法,一般認為吹脫與濕度、PH、氣液比有關。 1.2 沸石脫氨法利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。應用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。採用焚燒法時,產生的氨氣必須進行處理。 1.3 膜分離技術利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。例如:氣水分離膜脫除氨氮氨氮在水中存在著離解平衡,隨著PH升高,氨在水中NH3形態比例升高,在一定溫度和壓力下,NH3的氣態和液態兩項達到平衡。根據化學平衡移動的原理即呂.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相對的和暫時的。化學平衡只是在一定條件下才能保持「假若改變平衡系統的條件之一,如濃度、壓力或溫度,平衡就向能減弱這個改變的方向移動。」遵從這一原理進行了如下設計理念在膜的一側是高濃度氨氮廢水,另一側是酸性水溶液或水。當左側溫度T1>20℃,PH1>9,P1>P2保持一定的壓力差,那麼廢水中的游離氨NH4+,就變為氨分子NH3,並經原料液側介面擴散至膜表面,在膜表面分壓差的作用下,穿越膜孔,進入吸收液,迅速與酸性溶液中的H+反應生成銨鹽。 1.4MAP沉澱法主要是利用以下化學反應:Mg2++NH4++PO43-=MgNH4PO4 理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2 + ][NH4+][PO43 -]>2.5×10–13時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。 1.5 化學氧化法利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。 2 生物脫氮法傳統和新開發的脫氮工藝有A/O,兩段活性污泥法、強氧化好氧生物處理、短程硝化反硝化、超聲吹脫處理氨氮法方法等。 2.1A/O工藝將前段缺氧段和後段好氧段串聯在一起,A段DO不大於0.2mg/L,O段DO=2~4mg/L。在缺氧段異養菌將污水中的澱粉、纖維、碳水化合物等懸浮污染物和可溶性有機物水解為有機酸,使大分子有機物分解為小分子有機物,不溶性的有機物轉化成可溶性有機物,當這些經缺氧水解的產物進入好氧池進行好氧處理時,提高污水的可生化性,提高氧的效率;在缺氧段異養菌將蛋白質、脂肪等污染物進行氨化(有機鏈上的N或氨基酸中的氨基)游離出氨(NH3、NH4+),在充足供氧條件下,自養菌的硝化作用將NH3-N(NH4+)氧化為NO3-,通過迴流控制返回至A池,在缺氧條件下,異氧菌的反硝化作用將NO3-還原為分子態氮(N2)完成C、N、O在生態中的循環,實現污水無害化處理。其特點是缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷,反硝化反應產生的鹼度可以補償好氧池中進行硝化反應對鹼度的需求。好氧在缺氧池之後,可以使反硝化殘留的有機污染物得到進一步去除,提高出水水質。BOD5的去除率較高可達90~95%以上,但脫氮除磷效果稍差,脫氮效率70~80%,除磷只有20~30%。盡管如此,由於A/O工藝比較簡單,也有其突出的特點,目前仍是比較普遍採用的工藝。
❻ 氨氮廢水處理的處理方法
高氨氮廢水如何處理,我們著重介紹一下其處理方法: 1. 吹脫法
在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法,一般認為吹脫與溫度、PH、氣液比有關。
2. 沸石脫氨法
利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。應用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。採用焚燒法時,產生的氨氣必須進行處理。
3.膜分離技術
利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。例如:氣水分離膜脫除氨氮。氨氮在水中存在著離解平衡,隨著PH升高,氨在水中NH3形態比例升高,在一定溫度和壓力下,NH3的氣態和液態兩項達到平衡。根據化學平衡移動的原理即呂.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相對的和暫時的。化學平衡只是在一定條件下才能保持「假若改變平衡系統的條件之一,如濃度、壓力或溫度,平衡就向能減弱這個改變的方向移動。」遵從這一原理進行了如下設計理念在膜的一側是高濃度氨氮廢水,另一側是酸性水溶液或水。當左側溫度T1>20℃,PH1>9,P1>P2保持一定的壓力差,那麼廢水中的游離氨NH4+,就變為氨分子NH3,並經原料液側介面擴散至膜表面,在膜表面分壓差的作用下,穿越膜孔,進入吸收液,迅速與酸性溶液中的H+反應生成銨鹽。
4.MAP沉澱法
主要是利用以下化學反應:Mg2++NH4++PO43-=MgNH4PO4
理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2 + ][NH4+][PO43 -]>2.5×10–13時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。
5.化學氧化法
利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。 傳統和新開發的脫氮工藝有A/O,兩段活性污泥法、強氧化好氧生物處理、短程硝化反硝化、超聲吹脫處理氨氮法方法等。
1.A/O工藝將前段缺氧段和後段好氧段串聯在一起,A段DO不大於0.2mg/L,O段DO=2~4mg/L。在缺氧段異養菌將污水中的澱粉、纖維、碳水化合物等懸浮污染物和可溶性有機物水解為有機酸,使大分子有機物分解為小分子有機物,不溶性的有機物轉化成可溶性有機物,當這些經缺氧水解的產物進入好氧池進行好氧處理時,提高污水的可生化性,提高氧的效率;在缺氧段異養菌將蛋白質、脂肪等污染物進行氨化(有機鏈上的N或氨基酸中的氨基)游離出氨(NH3、NH4+),在充足供氧條件下,自養菌的硝化作用將NH3-N(NH4+)氧化為NO3-,通過迴流控制返回至A池,在缺氧條件下,異氧菌的反硝化作用將NO3-還原為分子態氮(N2)完成C、N、O在生態中的循環,實現污水無害化處理。其特點是缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷,反硝化反應產生的鹼度可以補償好氧池中進行硝化反應對鹼度的需求。好氧在缺氧池之後,可以使反硝化殘留的有機污染物得到進一步去除,提高出水水質。BOD5的去除率較高可達90~95%以上,但脫氮除磷效果稍差,脫氮效率70~80%,除磷只有20~30%。盡管如此,由於A/O工藝比較簡單,也有其突出的特點,目前仍是比較普遍採用的工藝。
2.兩段活性污泥法能有效的去除有機物和氨氮,其中第二級處於延時曝氣階段,停留時間在36小時左右,污水濃度在2g/l以下,可以不排泥或少排泥從而降低污泥處理費用。
3.強氧化好氧生物處理其典型代表有粉末活性炭法(PACT工藝)
粉末活性碳法的主要特點是向曝氣池中投加粉末活性炭(PAC)利用粉末活性炭極為發達的微孔結構和更大的吸附能力,使溶解氧和營養物質在其表面富集,為吸附在PAC 上的微生物提供良好的生活環境從而提高有機物的降解速率。
近年來國內外出現了一些全新的脫氮工藝,為高濃度氨氮廢水的脫氮處理提供了新的途徑。主要有短程硝化反硝化、好氧反硝化和厭氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是應用最廣泛的脫氮方式,是去除水中氨氮的一種較為經濟的方法,其原理就是模擬自然生態環境中氮的循環,利用硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。由於氨氮氧化過程中需要大量的氧氣,曝氣費用成為這種脫氮方式的主要開支。短程硝化反硝化是將氨氮氧化控制在亞硝化階段,然後進行反硝化,省去了傳統生物脫氮中由亞硝酸鹽氧化成硝酸鹽,再還原成亞硝酸鹽兩個環節(即將氨氮氧化至亞硝酸鹽氮即進行反硝化)。該技術具有很大的優勢:①節省25%氧供應量,降低能耗;②減少40%的碳源,在C/N較低的情況下實現反硝化脫氮;③縮短反應歷程,節省50%的反硝化池容積;④降低污泥產量,硝化過程可少產污泥33%~35%左右,反硝化階段少產污泥55%左右。實現短程硝化反硝化生物脫氮技術的關鍵就是將硝化控制在亞硝酸階段,阻止亞硝酸鹽的進一步氧化。
5. 厭氧氨氧化(ANAMMOX)和全程自養脫氮(CANON)
厭氧氨氧化是指在厭氧條件下氨氮以亞硝酸鹽為電子受體直接被氧化成氮氣的過程。
厭氧氨氧化(Anaerobicammoniaoxidation,簡稱ANAMMOX)是指在厭氧條件下,以Planctomycetalessp為代表的微生物直接以NH4+為電子供體,以NO2-或NO3-為電子受體,將NH4+、NO2-或NO3-轉變成N2的生物氧化過程。該過程利用獨特的生物機體以硝酸鹽作為電子供體把氨氮轉化為N2,最大限度的實現了N的循環厭氧硝化,這種耦合的過程對於從厭氧硝化的廢水中脫氮具有很好的前景,對於高氨氮低COD的污水由於硝酸鹽的部分氧化,大大節省了能源。目前推測厭氧氨氧化有多種途徑。其中一種是羥氨和亞硝酸鹽生成N2O的反應,而N2O可以進一步轉化為氮氣,氨被氧化為羥氨。另一種是氨和羥氨反應生成聯氨,聯氨被轉化成氮氣並生成4個還原性[H],還原性[H]被傳遞到亞硝酸還原系統形成羥氨。第三種是:一方面亞硝酸被還原為NO,NO被還原為N2O,N2O再被還原成N2;另一方面,NH4+被氧化為NH2OH,NH2OH經N2H4,N2H2被轉化為N2。厭氧氨氧化工藝的優點:可以大幅度地降低硝化反應的充氧能耗;免去反硝化反應的外源電子供體;可節省傳統硝化反硝化反應過程中所需的中和試劑;產生的污泥量極少。厭氧氨氧化的不足之處是:到目前為止,厭氧氨氧化的反應機理、參與菌種和各項操作參數不明確。
全程自養脫氮的全過程實在一個反應器中完成,其機理尚不清楚。Hippen等人發現在限制溶解氧(DO濃度為0.8·1.0mg/l)和不加有機碳源的情況下,有超過60%的氨氮轉化成N2而得以去除。同時Helmer等通過實驗證明在低DO濃度下,細菌以亞硝酸根離子為電子受體,以銨根離子為電子供體,最終產物為氮氣。有實驗用熒光原位雜交技術監測全程自養脫氮反應器中的微生物,發現在反應器處於穩定階段時即使在限制曝氣的情況下,反應器中任然存在有活性的厭氧氨氧化菌,不存在硝化菌。有85%的氨氮轉化為氮氣。鑒於以上理論,全程自養脫氮可能包括兩步第一是將部分氨氮氧化為煙硝酸鹽,第二是厭氧氨氧化。
6. 好氧反硝化
傳統脫氮理論認為,反硝化菌為兼性厭氧菌,其呼吸鏈在有氧條件下以氧氣為終末電子受體在缺氧條件下以硝酸根為終末電子受體。所以若進行反硝化反應,必須在缺氧環境下。近年來,好氧反硝化現象不斷被發現和報道,逐漸受到人們的關注。一些好氧反硝化菌已經被分離出來,有些可以同時進行好氧反硝化和異養硝化(如Robertson等分離、篩選出的Tpantotropha.LMD82.5)。這樣就可以在同一個反應器中實現真正意義上的同步硝化反硝化,簡化了工藝流程,節省了能量。
7.超聲吹脫處理氨氮
超聲吹脫法去除氨氮是一種新型、高效的高濃度氨氮廢水處理技術,它是在傳統的吹脫方法的基礎上,引入超聲波輻射廢水處理技術,將超聲波和吹脫技術聯用而衍生出來的一種處理氨氮的方法。將這兩種方法聯用不僅改進了超聲波處理廢水成本較高的問題,也彌補了傳統吹脫技術去除氨氮不佳的缺陷,超生吹脫法在保證處理氨氮的效果的同時還能對廢水中有機物的降解起到一定的提高作用。技術特點(1)高濃度氨氮廢水採用90年代高新技術——超聲波脫氮技術,其總脫氮效率在70~90%,不需要投加化學葯劑,不需要加溫,處理費用低,處理效果穩定。(2)生化處理採用周期性活性污泥法(CASS)工藝,建設費用低,具有獨特的生物脫氮功能,處理費用低,處理效果穩定,耐負荷沖擊能力強,不產生污泥膨脹現象,脫氮效率大於90%,確保氨氮達標。
❼ 氨氮廢水使用吹脫法+a2o工藝如何處理
根據我做的十幾個工程案例來看,氨氮才450用吹脫塔效果很差。
直接A2O的話碳氮比嚴重失調了,至少要達到5.
這樣每天需要加大量的碳源。建議使用物理混凝方法去除氨氮
❽ 高濃度氨氮廢水能夠用吹脫法處理嗎
無機氮 可以使用吹脫工藝 運行效果好的話 出水氨氮可以小於200mg/l.如果是有機氮 那你要另想辦法了。
❾ 吹脫法處理氨氮廢水是否新思路
謝謝樓上的專家噢,但是這個版塊好像不能給你加分噢。其實我也知道生物脫內氮工藝現在很容流行,但是實驗室條件不夠,而且我是學化工的,對於生物方面不是很了解,導師建議從原始的吹脫法做起,可是以他的思路何以發文章啊,正在愁呢。。。
❿ 高氨氮廢水如何處理
高濃度氨氮廢水對微生物有一定的抑製作用,但N同時又是微生物生長的一種專不可缺少的營養元素屬。
氨氮廢水的處理主要有以下的方法:
如果氨氮超高的話,可先加氫氧化鈉調節水PH11左右,通過氨氮吹脫塔用空氣吹脫,去除率可達80%左右,當然僅僅通過這樣的方法無法處理達標,還需後續處理。剩餘的氨氮可以通過脫氮的污水處理工藝進行去除:比如說A/O、A/AO、SBR等活性污泥法,以及曝氣生物濾池生物轉盤的生物膜法進行處理。