導航:首頁 > 污水知識 > 廢水厭氧生物處理優缺點

廢水厭氧生物處理優缺點

發布時間:2020-12-19 22:02:51

廢水的好氧生物處理與厭氧生物處理各有什麼優缺點

廢水的好氧生物處理與厭氧生物處理各有什麼優缺點
好氧生物法是在有游專離氧(分子氧)存在的條件下屬,好氧微生物降解有機物,使其穩定、無害化的處理方法。微生物利用廢水中存在的有機污染物(以溶解狀與膠體狀的為主),作為營養源進行好氧代謝。

厭氧處理是利用厭氧菌的作用,去除廢水中的有機物,通常需要時間較長。厭氧生物處理是有機物在無氧的條件下,藉助轉性厭氧菌和兼性厭氧菌的作用下,將大部分的有機物轉化為甲烷,二氧化碳,水等簡單小分子有機物。也稱厭氧消化、厭氧發酵或厭氧穩定技術。厭氧處理後的污泥和消化液可用於農田作為肥料。

② 廢水厭氧生物處理和好氧生物處理的區別

最大的區別就是處理環境.厭氧生物處理就是在厭氧條件下微生物降解廢水中的有機物
好氧生物處理就是在有氧條件下微生物降解廢水中的有機物
其次是所能處理的有機物.厭氧生物處理處理大分子量的有機物.主要是將大分子量的有機物分
解成較小分子量的有機物並將其中一部分的有機物轉化成甲烷等可利
用的能源
好氧生物處理處理經厭氧生物處理後的廢水中分子量較小的有機物並
將其分解成無機物,分解的無機物在二沉池加入一定量的混凝劑和/或絮
凝劑將其沉降與水分離從而達到廢水凈化的目的
厭氧處理是利用厭氧菌的作用,去除廢水中的有機物,通常需要時間較長.厭氧過程可分為水解階段、酸化階段和甲烷化階段.
水解酸化的產物主要是小分子有機物,使廢水中溶解性有機物顯著提高,而微生物對有機物的攝取只有溶解性的小分子物質才可直接進入細胞內,而不溶性大分子物質首先要通過胞外酶的分解才得以進入微生物體內代謝.例如天然膠聯劑(主要為澱粉類),首先被轉化為多糖,再水解為單糖.纖維素被纖維素酶水解成纖維二糖與葡萄糖.半纖維素被聚木糖酶等水解成低聚糖和單糖.
水解過程較緩慢,同時受多種因素的影響,是厭氧降解的限速階段.在酸化這一階段,上述第一階段形成的小分子化合物在發酵細菌即酸化菌的細胞內轉化為更簡單的化合物並分泌到細菌體外,主要包括揮發性有機酸(VFA)、乳醇、醇類等,接著進一步轉化為乙酸、氫氣、碳酸等.酸化過程是由大量發酵細菌和產乙酸菌完成的,他們絕大多數是嚴格厭氧菌,可分解糖、氨基酸和有機酸.
好氧池的作用是讓活性污泥進行有氧呼吸,進一步把有機物分解成無機物.去除污染物的功能.運行好是要控制好含氧量及微生物的其他各需條件的最佳,這樣才能是微生物具有最大效益的進行有氧呼吸

③ 廢水厭氧生物處理的技術特點

優點:
1、高效對污水進行處理
2、簡單易行
3、靈活適用於大小規模
4、容積負荷率的版提高使得對空間的需求降低權
5、能耗低
6、剩餘污泥量少
7、污泥穩定性良好,具有良好的脫水性能,有利於污泥的最重處置
8、厭氧污泥可以在不嚴重影響其活性和其他重要特性的情況下被保持很長時間
9、低營養需求(對N、P等需求很低)
缺點:
1、厭氧微生物對pH、溫度和毒性等環境條件極其敏感
2、厭氧反應器的初次啟動期很長
3、處理過程會產生惡臭味氣體
但這些缺點可以被逐漸的克服,厭氧處理過程非常穩定;只有在處理工業廢水的時候可能需要控制pH;厭氧處理微生物容易適應低溫環境,也能夠忍耐很多種毒性物質;而在一定情況下,恰當的設計、建設以及適當的運行反應器能夠完全除去惡臭氣體。總體來說,廢水的厭氧生物處理比較適應當前的環境情況,有利於可持續發展的進行。

④ 廢水厭氧生物處理的原理

在厭氧處理過程中,廢水中的有機物經大量微生物的共同作用,被最終轉化為甲烷、二氧化碳、水、硫化氫和氨等。在此過程中,不同微生物的代謝過程相互影響,相互制約,形成了復雜的生態系統。對高分子有機物的厭氧過程的敘述,有助於我們了解這一過程的基本內容。
高分子有機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階段。
(1)水解階段
水解可定義為復雜的非溶解性的聚合物被轉化為簡單的溶解性單體或二聚體的過程。
高分子有機物因相對分子量巨大,不能透過細胞膜,因此不可能為細菌直接利用。它們在第一階段被細菌胞外酶分解為小分子。例如,纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶分解為麥芽糖和葡萄糖,蛋白質被蛋白質酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。水解過程通常較緩慢,因此被認為是含高分子有機物或懸浮物廢液厭氧降解的限速階段。多種因素如溫度、有機物的組成、水解產物的濃度等可能影響水解的速度與水解的程度。水解速度的可由以下動力學方程加以描述:ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物濃度(g/L);
ρo———非溶解性底物的初始濃度(g/L);
Kh——水解常數(d^-1);
T——停留時間(d)
(2)發酵(或酸化)階段
發酵可定義為有機物化合物既作為電子受體也是電子供體的生物降解過程,在此過程中溶解性有機物被轉化為以揮發性脂肪酸為主的末端產物,因此這一過程也稱為酸化。
在這一階段,上述小分子的化合物發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。發酵細菌絕大多數是嚴格厭氧菌,但通常有約1%的兼性厭氧菌存在於厭氧環境中,這些兼性厭氧菌能夠起到保護像甲烷菌這樣的嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產物有揮發性脂肪酸、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等,產物的組成取決於厭氧降解的條件、底物種類和參與酸化的微生物種群。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此,未酸化廢水厭氧處理時產生更多的剩餘污泥。
在厭氧降解過程中,酸化細菌對酸的耐受力必須加以考慮。酸化過程pH下降到4時能可以進行。但是產甲烷過程pH值的范圍在6.5~7.5之間,因此pH值的下降將會減少甲烷的生成和氫的消耗,並進一步引起酸化末端產物組成的改變。
(3)產乙酸階段
在產氫產乙酸菌的作用下,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。
其某些反應式如下:
CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG』0=-4.2KJ/MOL
CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG』0=9.6KJ/MOL
CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG』0=48.1KJ/MOL
CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG』0=76.1KJ/MOL
4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG』0=-2.9KJ/MOL
2HCO3-+4H2+H+->CH3COO-+4H2O ΔG』0=-70.3KJ/MOL
(4)甲烷階段
這一階段,乙酸、氫氣、碳酸、甲酸和甲醇被轉化為甲烷、二氧化碳和新的細胞物質。
甲烷細菌將乙酸、乙酸鹽、二氧化碳和氫氣等轉化為甲烷的過程有兩種生理上不同的產甲烷菌完成,一組把氫和二氧化碳轉化成甲烷,另一組從乙酸或乙酸鹽脫羧產生甲烷,前者約占總量的1/3,後者約佔2/3。
最主要的產甲烷過程反應有:
CH3COO-+H2O->CH4+HCO3- ΔG』0=-31.0KJ/MOL
HCO3-+H++4H2->CH4+3H2O ΔG』0=-135.6KJ/MOL
4CH3OH->3CH4+CO2+2H2O ΔG』0=-312KJ/MOL
4HCOO-+2H+->CH4+CO2+2HCO3- ΔG』0=-32.9KJ/MOL
在甲烷的形成過程中,主要的中間產物是甲基輔酶M(CH3-S-CH2-SO3-)。
需要指出的是:一些書把厭氧消化過程分為三個階段,把第一、第二階段合成為一個階段,稱為水解酸化階段。在這里我們則認為分為四個階段能更清楚反應厭氧消化過程。
上述四個階段的反應速度依廢水的性質而異,在含纖維素、半纖維素、果膠和脂類等污染物為主的廢水中,水解易成為速度限制步驟;簡單的糖類、澱粉、氨基酸和一般蛋白質均能被微生物迅速分解,對含這類有機物的廢水,產甲烷易成為限速階段。雖然厭氧消化過程可分為以上四個過程,但是在厭氧反應器中,四個階段是同時進行的,並保持某種程度的動態平衡。該平衡一旦被pH值、溫度、有機負荷等外加因素所破壞,則首先將使產甲烷階段受到抑制,其結果會導致低級脂肪酸的積存和厭氧進程的異常變化,甚至導致整個消化過程停滯。

⑤ 比較廢水厭氧生物處理與廢水好氧生物處理的原理,特點及適用條件

好氧生物處理
好氧生物處理是在有游離氧(分子氧)存在的條件下,好氧微生物降解有機物,使其穩定、無害化的處理方法。微生物利用廢水中存在的有機污染物(以溶解狀與膠體狀的為主),作為營養源進行好氧代謝。

過程:有機物被微生物攝取後,通過代謝活動,約有三分之一被分解、穩定,並提供其生理活動所需的能量;約有三分之二被轉化,合成為新的原生質(細胞質),即進行微生物自身生長繁殖。後者就是廢水生物處理中的活性污泥或生物膜的增長部分,通常稱其剩餘活性污泥或生物膜,又稱生物污泥。在廢水生物處理過程中,生物污泥經固—液分離後,需進行進一步處理和處置。

優點:好氧生物處理的反應速度較快,所需的反應時間較短,故處理構築物容積較小。且處理過程中散發的臭氣較少。所以,目前對中、低濃度的有機廢水,或者說BOD濃度小於500mg/L的有機廢水,基本上採用好氧生物處理法。

在廢水處理工程中,好氧生物處理法有活性污泥法和生物膜法兩大類。
厭氧生物處理是在沒有游離氧存在的條件下,兼性細菌與厭氧細菌降解和穩定有機物的生物處理方法。在厭氧生物處理過程中,復雜的有機化合物被降解、轉化為簡單的化合物,同時釋放能量。在這個過程中,有機物的轉化分為三部分進行:部分轉化為CH4,這是一種可燃氣體,可回收利用;還有部分被分解為 CO2、H20、NH3、H2S等無機物,並為細胞合成提供能量;少量有機物被轉化、合成為新的原生質的組成部分。由於僅少量有機物用於合成,故相對於好氧生物處理法,其污泥增長率小得多。

廢水厭氧生物處理
廢水厭氧生物處理過程不需另加氧源,故運行費用低。此外,它還具有剩餘污泥量少,可回收能量(CH4)等優點。其主要缺點是反應速度較慢,反應時間較長,處理構築物容積大等。但通過對新型構築物的研究開發,其容積可縮小。此外,為維持較高的反應速度,需維持較高的反應溫度,就要消耗能源。

對於有機污泥和高濃度有機廢水(一般B005≥2 000mg/L)可採用厭氧生物處理法。

⑥ 厭氧生物處理與好養生物處理相比具有哪些優點和缺點

復好氧生物處理
制好氧生物處理是在有游離氧(分子氧)存在的條件下,好氧微生物降解有機物,使其穩定、無害化的處理方法。微生物利用廢水中存在的有機污染物(以溶解狀與膠體狀的為主),作為營養源進行好氧代謝。
廢水厭氧生物處理
廢水厭氧生物處理過程不需另加氧源,故運行費用低。此外,它還具有剩餘污泥量少,可回收能量(CH4)等優點。其主要缺點是反應速度較慢,反應時間較長,處理構築物容積大等。但通過對新型構築物的研究開發,其容積可縮小。此外,為維持較高的反應速度,需維持較高的反應溫度,就要消耗能源。
對於有機污泥和高濃度有機廢水(一般B005≥2 000mg/L)可採用厭氧生物處理法。

⑦ 污水處理厭氧生物處理的影響因素有哪些

⑴ 能耗較低:因為厭氧生物處理不需要供氧,能源消耗約為好氧活性污泥法專的1/10,還能產生具屬有較高熱值的甲烷氣(CH4)。每去除1gCODcr可以產生0.35標准升甲烷或0.7標准升沼氣。沼氣的熱值為22.7KJ/L,甲烷的熱值為39300KJ/m3,一般天然氣的熱值為34300KJ/m3 。
⑵ 污泥產量低:因為厭氧微生物的增殖速率比好氧微生物低得多,好氧生物處理系統每處理1kgCODcr產生的污泥量為0.25~0.6kg,而厭氧生物處理系統每處理1kgCODcr產生的污泥量只有0.02~0.18kg。
⑶可對好氧生物處理系統不能降解的一些大分子有機物進行徹底降解或部分降解。
⑷ 厭氧微生物對溫度、PH等環境因素的變化更為敏感,運行管理好厭氧生物處理系統的難度較大。
⑸ 水溫適應廣:好氧處理水溫在10~35℃之間,當高溫時就需採取降溫措施;而厭氧處理水溫適應廣泛,分低溫厭氧(10~30℃)、中溫厭氧(30~40℃)和高溫厭氧(50~60℃)。

⑧ 厭氧生物處理工藝應用於廢水處理時有哪些優缺點

好氧生來物處理是在有游自離氧(分子氧)存在的條件下,好氧微生物降解有機物,使其穩定、無害化的處理方法。優點有反應速度較快,廢水停留時間較短,故處理構築物容積較小;處理過程中散發的臭氣較少;對能降解有機物分解完全等。缺點有對難降解有機物去除率低、污泥量較厭氧處理多、運行費用較高等。
厭氧生物處理是有機物在無氧的條件下,藉助轉性厭氧菌和兼性厭氧菌的作用下,將大部分的有機物轉化為甲烷等簡單小分子有機物與無機物,從而使污水得到凈化。優點有有機物去除率高、污泥量少、運行費用少等。缺點有廢水停留時間較長、有機物分解不完全、臭氣產生多等。

⑨ 哪位高手知道厭氧法和好氧法處理的優缺點和適用范圍是什麼

【好氧法】好氧生物處理是在有游離氧(分子氧)存在的條件下,好氧微生物降解有機物,使其穩定、無害化的處理方法。微生物利用廢水中存在的有機污染物(以溶解狀與膠體狀的為主),作為營養源進行好氧代謝。
【過程】有機物被微生物攝取後,通過代謝活動,約有三分之一被分解、穩定,並提供其生理活動所需的能量;約有三分之二被轉化,合成為新的原生質(細胞質),即進行微生物自身生長繁殖。後者就是廢水生物處理中的活性污泥或生物膜的增長部分,通常稱其剩餘活性污泥或生物膜,又稱生物污泥。在廢水生物處理過程中,生物污泥經固—液分離後,需進行進一步處理和處置。
【優缺點】好氧生物處理的反應速度較快,所需的反應時間較短,故處理構築物容積較小。且處理過程中散發的臭氣較少。缺點就是需持續曝氣,耗能大,運行費用高,產生的污泥量大。
【適用范圍】目前對中、低濃度的有機廢水,或者說BOD濃度小於500mg/L的有機廢水,基本上採用好氧生物處理法。
····················································································································································
【厭氧法】厭氧生物處理是在沒有游離氧存在的條件下,兼性細菌與厭氧細菌降解和穩定有機物的生物處理方法。
【過程】在厭氧生物處理過程中,復雜的有機化合物被降解、轉化為簡單的化合物,同時釋放能量。在這個過程中,有機物的轉化分為三部分進行:部分轉化為CH4,這是一種可燃氣體,可回收利用;還有部分被分解為 CO2、H20、NH3、H2S等無機物,並為細胞合成提供能量;少量有機物被轉化、合成為新的原生質的組成部分。由於僅少量有機物用於合成,故相對於好氧生物處理法,其污泥增長率小得多。
【優缺點】廢水厭氧生物處理過程不需另加氧源,故運行費用低。此外,它還具有剩餘污泥量少,可回收能量(CH4)等優點。其主要缺點是反應速度較慢,反應時間較長,處理構築物容積大等。此外,為維持較高的反應速度,需維持較高的反應溫度,就要消耗能源。
【適用范圍】對於有機污泥和高濃度有機廢水(一般B005≥2 000mg/L)可採用厭氧生物處理法。

⑩ 厭氧生物處理工藝應用於廢水處理時有哪些優缺點

優點:良好的環境效益佔地少剩餘污泥量少營養物質需求量小應用范圍廣易啟動,可保持活性

缺點:出水COD濃度較高啟動時間長厭氧微生物對有毒物質敏感

閱讀全文

與廢水厭氧生物處理優缺點相關的資料

熱點內容
海爾凈水器11廢水75gggg 瀏覽:386
凈水器前景如何選擇 瀏覽:251
車用空氣凈化器怎麼保養 瀏覽:667
廢水採集中保存劑的使用 瀏覽:339
水溶性樹脂防水劑 瀏覽:49
魚缸里的凈化器怎麼安裝多層的 瀏覽:160
超濾cip什麼意思 瀏覽:286
gkn格卡諾凈化器怎麼樣 瀏覽:852
半透膜的具體作用是什麼 瀏覽:413
磁化水凈水器多少錢 瀏覽:879
樹脂呀多久能吃東西 瀏覽:271
常用的畜禽養殖污水處理技術 瀏覽:763
工業廢水中cod多少算超標 瀏覽:729
凈化器溫度是多少 瀏覽:775
容聲凈水器有反滲透嗎 瀏覽:14
索納塔九空氣濾芯怎麼安裝 瀏覽:159
湖北專業凈水器多少錢 瀏覽:783
3mm厚仿古是樹脂瓦 瀏覽:493
乳膠漆廢水如何處理 瀏覽:92
空氣凈化器集塵是什麼意思 瀏覽:559