導航:首頁 > 污水知識 > 藍鐵礦污水

藍鐵礦污水

發布時間:2020-12-19 10:19:29

A. 鐵尾礦的磁鐵礦在廢水處理中的應用

北京科技大學的王化軍教授從2004年在上海沃山重工的支持下開始研究將磁鐵礦作為一種載體,應用於三相流化床中,用於生活污水的處理,現已在研究中取得較好的成果。
磁鐵礦作為載體應用於三相流化床的優勢:(一)磁鐵礦粒度小、比表面積大,因而能夠提供較大的生物密度,有利於廢水的降解處理;(二)通過外加磁場可以控制載體的運動,使其不易流失,不需要經常性補給;(三)載體本身具有磁性,可以通過磁選機快速有效地實現泥水分離,同時便於脫膜和再生;(四)磁鐵礦資源豐富,價廉易得。
楊躍軍等人研究表明,磁鐵礦三相生物流化床利用活性污泥掛膜簡單、快速,在原水水溫25℃左右、pH=7條件下。12天可以使生物膜生長成熟;進水COD為400mg/L的生活污水,在水流停留時間2小時、充氣量0.3m3/h、迴流比70%(無三相分離器)、0.043~0.075mm磁鐵礦添加量55g/L,磁鐵礦三相生物流化床處理生活污水出水COD為20mg/L,COD去除率達到95%,單位容積負荷是普通活性污泥法的2.5倍。
其主要的缺陷在於磁鐵礦密度大,不易流化。因此,北京科技大學在磁鐵礦表麵包覆一層苯乙烯/丙烯酸丁酯應用於生物流化床,保留了載體的磁性,降低了載體的密度,且對生物膜無毒無害。採用包覆過的載體,流化床的氣-水比大大降低,達到了節約能耗的目的。但是磁鐵礦包覆又提高了磁鐵礦作為載體的成本。

B. 污水處理

污水處理對地下水產生的污染主要是化學和生物污染,其影響的程度主要取決於污水的處理方法、含水層的水文地質和水文地球化學條件。

污水處理中引起地下水污染的做法主要包括用處理後的污水進行灌溉、用污泥施肥、有意或無意的污水入滲、生活污水管的泄漏以及污水對井的地表污染。

致病微生物是被污水污染的地下水對人體產生的最大威脅,Yates等(1993)綜述了細菌和病毒污染對人體健康產生的影響,並對其在地下水中的遷移和最終結局進行了討論。據此,他們認為20世紀80年代美國由飲用水傳染的大約200種疾病中,約1/2是由未處理或消毒不充分的地下水所引起的。

在地下水流系統中,細菌和病毒可存活數月,運移數百米(Yates等,1993)。這兩種微生物都是在低溫下可存活更長的時間,當溫度為8℃時,它們甚至可以無限期地存活。物理性的過濾可阻止細菌的運移,尤其是在細顆粒的土壤中更是如此。但病毒的體積很小,大部分的土壤不能使其含量明顯地減少。吸附是使兩種微生物含量減少的重要作用,Langmuir和Freundlich吸附等溫線均可用來描述地下水運移過程中兩種微生物的吸附作用。

污水的化學污染比生物污染的公認程度更高,污水中的許多污染物(如硝酸根)同時還與其他類型的污染相關。在污水中還含有各種類型的其他大量或微量組分,它們或者對人體健康有影響,或者可用來示蹤污染暈。幾乎所有常見的穩定同位素都可用來研究污水的污染問題。

5.2.3.1 污水處理廠對地下水的污染

污水可使用多種技術進行處理,污水處理的程度可劃分為初級、二級和三級(高級)。初級處理是指通過濾網或沉澱池除去其中的固體,二級處理指的是使用微生物除去廢水中的有機負荷,三級(高級)處理則是指去除廢水中特定化學物質(如硝酸根、磷酸根)的過程。經過二級處理後,廢水就允許排泄到天然水道中,或通過滲床滲入地下,或用來灌溉農田、高爾夫球場及其他的植被。其對地下水的影響就是在這些處置過程中發生的,從廢水中分離出的固體可進一步進行處理,或者在垃圾填埋場中填埋,或者用於施肥以提高土壤肥力,這樣,污泥的淋濾也會對地下水產生影響。

在美國農村地區的小社區,對污水進行二級處理的最常見方法就是氧化池(或污物穩定池)法。氧化池通常由一系列的蓄水池組成,污水依次通過各處理單元時其處理程度逐步加深,氧化池同時使用了好氧和厭氧過程來處理廢水中的 BOD。這種方法與其他方法相比要相對經濟一些,特別適用於土地面積不受限制的地區。Kehew(1984)和Bulger等人(1989)研究了美國北達科他州McVille污水處理場地對地下水的影響,該處理系統的蓄水池建設在可滲透的冰水沉積物上,要使廢水在池中有適宜的停留時間,必須對各處理單元進行襯砌。但三個處理單元只有一個做了襯砌,當廢水水位超過襯砌的處理單元時,它就會向未襯砌的處理單元排泄,這時廢水便會快速地滲透到淺層潛水含水層中。從第二個處理單元開始向下遊方向,地下水中的溶解固體、溶解有機碳、銨、鐵以及其他組分都有升高(圖5-2-9)。在處理單元附近,地下水的實測pE值很低,隨著遠離蓄水池,pE值逐漸升高,這與富含有機污染物的污染暈非常類似。該場地中的一個有趣的現象就是,來自上游一個好氧填埋場的污染暈,似乎與廢物穩定池下部的還原性污染暈發生了混合,從而使還原成了(Bulger等,1989)。

馬薩諸塞州Otis空軍基地由於二級處理廢水通過滲床入滲所引起的地下水污染問題在文獻中報道很多(LeBlane,1984;Barber,1992),該基地的污水處理廠從1936年開始運營,通過它處理廢水被排放到了一個24.5英畝的滲床中,在滲床的下游,形成了一個4000 m長、1000 m寬、30 m深的污染暈。可用多種參數來勾畫污染暈的范圍(圖5-2-10),但硼是最有用的一種參數,這是因為硼是一種保守性組分,在運移過程中不怎麼發生化學反應,而且在背景地下水中不存在。硼之所以在污染暈中出現,是因為在洗衣粉中過硼酸鈉被用作為了漂白劑。在地下水中,硼是以原硼酸(B(OH)3)的形式存在的,它之所以沒有發生離解是因為污染暈的pH值要遠低於原硼酸的pKa值。污染暈還可用電導率、氯濃度以及其他參數來勾畫。在二級處理廢水中DOC的含量大大減小,同時,大於背景值(2~5 mg/L)的DOC足以在污染暈中形成缺氧(反硝化作用)的條件。向下遊方向,污染暈與含氧補給水的混合可導致銨的硝化,盡管地下水中的濃度一般低於5 mg/L。處理後的廢水中,磷的濃度通常也相對較高,它在地下水中通常是以正磷酸根的形式存在的。由於磷酸根易於被含水層介質所吸附,或以低溶解度的磷酸鐵或磷酸鋁的形式沉澱,因此在污染暈中,磷酸根常常被強烈阻滯。

圖5-2-9 McVille污水處理場地中溶解有機碳的分布

Otis空軍基地污染暈的一個有趣現象是其含有來自家用洗潔劑中的化合物,根據測試這些物質所採用試劑的名稱(Methylene Blue Active Substances-亞甲藍活性物質),其在地下水中的含量通常用MBAS來表示。這些化合物一般由陰離子型表面活性劑組成,它們在地下水中的遷移性很強。洗潔劑在美國的使用大約始於1946年,1953年它們的使用量超過了肥皂。1964年之前,洗潔劑中最常用的表面活性劑是烷基苯磺酸鹽(ABS),它基本上是不可生物降解的。1964年,它開始被較易生物降解的表面活性劑——線性烷基磺酸鹽(LAS)所代替。MBAS在污染暈中的分布保存了洗潔劑使用的這一歷史,MBAS的最大濃度出現在污染暈的最前端(圖5-2-11),這些較高的濃度范圍反映了ABS的存在,而接近污染源的較低的濃度表明了污染暈中的LAS通過生物降解作用被去除了。

在污染暈中還檢測到了多種類型的其他合成揮發性和半揮發性化合物,它們均來源於家用洗潔劑及其他各種類型的產品,其中含量最大的是三氯乙烯(TCE)和四氯乙烯(PCE),它們在污染暈中的濃度已超過限制界限(Barber,1992)。

圖5-2-10 馬薩諸塞州Otis空軍基地硼在地下水垂直剖面中的分布(1978.5~1979.5)

5.2.3.2 化糞池系統

在北美缺乏下水道的大部分地區,化糞池系統是廢物處置的首選方法。據估計,美國三分之一的廢水是通過化糞池系統處理的。在該系統中,廢水在一個水池中通過沉澱作用與固體廢物分離,然後被排放到多孔排泄瓦筒中,進而釋放到濾床,在這里,廢水很快地滲入了土壤。另一種方法是在表層土壤中垂直安裝多孔下水管,用以代替濾床。化糞池系統的原理是,通過土壤的過濾,可除去廢水中的污染物。很遺憾的是,很多化糞池系統都在淺層潛水中形成了污染暈,它可對附近的水井和地表水體產生影響。

對化糞池系統污染暈水文地球化學過程的研究是近年來研究工作的一個焦點(Harman等,1996;Robertson等,1991,1998;Tinker,1991;Aravena and Robertson,1998;Robertson,1995;Robertson and Cherry,1995),其中最受關注的污染組分是硝酸根和磷酸根。硝酸根有時可導致嬰兒發生致命性的疾病——高鐵血紅蛋白症,這主要是由於嬰兒血攜氧能力的減弱而造成的。硝酸根也是水體富營養化的養分元素,地下水則是這些水體的補給源。磷酸根雖然比硝酸根的遷移能力弱,它也是水體富營養化的主要誘因之一。致病微生物的遷移也是可滲透性含水層值得關注的問題。

Harman等(1996)研究了加拿大安大略省一個學校的化糞池系統,該系統位於一個淺層潛水含水層之中。在化糞池中,廢水是一種強還原性的溶液,具有很高的DOC,其中的氮主要以銨的形式存在。它在從濾床向地下水面運動的過程中發生了很大的變化,氧化過程使得DOC減少了90%,銨則全部轉化成了硝酸根。污染暈中硝酸根的濃度表示在圖5-2-12中,有機碳的氧化形成了CO2,當含水層中沒有碳酸鹽礦物時,這將使地下水的pH值降低。當含水層中存在碳酸鹽礦物時,它們將發生溶解,對水溶液的pH值產生緩沖作用,使污染暈中Ca2+、Mg2+的濃度增大。

圖5-2-11 1983年Otis空軍基地地下水中MBAS的平面(a)和剖面(b)分布

Robertson等(1998)對比了安大略省各種水文地球化學環境下,10個化糞池系統污染暈中磷酸根的遷移能力。其中,—P平均濃度的變化范圍為0.03~4.9 mg/L,污染暈的延伸長度從1 m變化到70 m。這與此前人們的一般認識是矛盾的,通常認為磷酸根被強烈地吸附到了含水層固體表面上,對地下水不構成威脅。但這一觀測結果表明磷酸根在地下水中的遷移可成為一個重要的問題,尤其當小型湖泊周圍的住宅中具有獨立化糞池系統時更是如此。Robertson等得出結論認為,磷酸根在包氣帶中通過礦物的沉澱作用發生了衰減,這些礦物主要是藍鐵礦(Fe3(PO42· 8H2O)、紅 磷 鐵 礦(FePO4·2H2O)及磷鋁石(AlPO4· 2H2O)。水中磷酸根的平衡濃度受到了pH值的控制,在低pH值條件下的非鈣質含水層中,磷酸根的濃度受礦物溶解度的控制而保持在一個很低的水平上.在中等pH值條件下(這主要是由於含水層中含有碳酸鹽礦物而引起的),磷酸根的濃度可以很高。廢水一旦到達潛水面,尤其是當含水層中的金屬氧化物具有表面正電荷時,磷酸根含量的減少則主要是由含水層固體的吸附作用所控制的。由於吸附和沉澱作用的影響,磷酸根的遷移速度約為地下水的流速的二十分之一。氮、碳、氧、硫的穩定同位素在示蹤化糞池系統污染暈及相關的地球化學轉化作用中是非常有用的(Aravena等,1993;Aravena and Robertson,1998)。

圖5-2-12 一個化糞池系統污染暈中心線處硝酸根濃度等值線剖面圖

對化糞池系統致病細菌和病毒污染危害的評估,目前所作的研究工作還相對較少(Bitton and Gerba,1984;Bales等,1995;Canter and Knox,1985;Yates,1985)。很多微生物的分析和檢測都比較困難且昂貴,當前所進行的研究工作主要集中在確定指示性微生物的遷移特徵上,它能夠間接地表明相應致病微生物的潛在遷移特性。大腸桿菌常被用作為指示性細菌,人類的腸道病毒以及大腸桿菌噬菌體(一種能夠感染腸道大腸桿菌的病毒)常被用作為指示性病毒。

DeBorde等(1998)在研究美國蒙大拿州一個中學的化糞池系統時,闡述了其微生物的運移情況。該研究包括了對化糞池及污染暈中人類腸道病毒和大腸桿菌噬菌體的監測,以及在含水層中注入大腸桿菌噬菌體。雖然人類腸道病毒在化糞池和含水層中很少被檢測到,但在觀測孔中卻一直能夠檢測到大腸桿菌噬菌體。盡管含水層具有強烈的吸附作用,但在距注水井30 m之外的觀測孔中仍檢測到了細菌。由於含水層性質的變化多種多樣,因此對所有條件下致病微生物遷移的准確預測幾乎是不可能的。

5.2.3.3 污水灌溉

來自污水處理廠的污水及污泥經常被用來灌溉或施肥,這種處理方法對地下水化學成分的影響與化糞池系統是類似的,但其在含水層中的影響范圍要更大一些。用污水及污泥灌溉或施肥時對環境影響最大的污染物是硝酸根。如果場地下部具有好氧包氣帶,廢物中的有機氮或銨將被氧化為硝酸根。在飽水帶中,只要保持氧化性條件,硝酸根在遷移過程中將不發生任何轉化作用。Spalding等(1993)研究了內布拉斯加州的一個場地,在這里,一塊玉米田使用污泥進行施肥,從而在其下遊方向形成了一個很大的硝酸根污染暈(圖5-2-13)。濃度大於10 mg/L的的范圍在地下水位之下延伸了大約15 m,盡管一細粒沉積物透鏡體阻止了其進一步下滲。氮同位素分析證實氮的來源是動物排泄物。

地下水化學成分的其他變化是由於廢物中的DOC引起的,若大量的DOC到達了潛水面,地下水中將發生氧的消耗作用。在以色列,人們在一塊用廢水灌溉的耕地之下達30 m深的含水層中發現了厭氧過程的存在(Ronen等,1987),在這種條件下,有機碳通過包氣帶的遷移過程將長達15年。在前述內布拉斯加州的場地中,DOC在含水層深部引起了反硝化作用發生。地下水中其他主要離子的濃度也隨著硝酸根和DOC含量的增大而增加。污泥中金屬的含量一般很大,但吸附和沉澱作用通常限制了它們在地下水中的遷移。

圖5-2-13 使用污泥施肥形成的硝酸根污染暈

C. 鐵礦磁選過程中,所產生的廢水有腐蝕性嗎

鐵礦選鐵,你要看他選擇的選鐵工藝是什麼,小型企業一般是用水磨法進行磁選.不會添加版什麼浮選劑權.但是因為它需要把礦石磨碎,礦石中的重金屬離子會溶解到水中,所以要對選礦廢水中的重金屬項目進行監測(常規的有鉛、鎘、銅、鋅等),再根據礦石材料的成分不同決定重金屬的項目增減.選礦廢水作為污水外排一般要監測 pH、SS、COD等.

D. 鐵礦污水排入河中井水會被污染嗎

當然會的。離的越近時間越短。

E. 鐵礦選礦廢水中主要含有什麼污染物 做地下水檢測要檢測那些因子 如果做污染模擬要模擬哪些污染物

鐵礦選鐵,來你要看他選擇的選鐵工源藝是什麼,小型企業一般是用水磨法進行磁選。不會添加什麼浮選劑。但是因為它需要把礦石磨碎,礦石中的重金屬離子會溶解到水中,所以要對選礦廢水中的重金屬項目進行監測(常規的有鉛、鎘、銅、鋅等),再根據礦石材料的成分不同決定重金屬的項目增減。 選礦廢水作為污水外排一般要監測 pH、SS、COD等。
做地下水監測的時候則不需要做SS。
至於污染模擬就不清楚了

F. 硫鐵礦廢水的危害性

第一環保網:硫鐵礦廢水是典型的無機重金屬含鹽量高的酸性廢水。危害:造成對周圍水體的污染、水生生物與植物的破壞,並破壞土壤層顆粒,使其板結硬化,酸性礦坑水更嚴重的是危害人類的身體健康。

G. 鐵礦石廢水污染如何稀釋

鐵礦石廢水污染處理方法:
A.自然降解法
水中的懸浮物經過自然的沉澱會得專到降解,而水中的化學屬葯劑隨著時間的延長也會得到降解。試驗研究中發現,5天之內,黃葯的濃度降解到了國家的一級排放標准之內,pH值也接近中性,但是該法所需時間較長。
B.氧化法
在選礦排放水處理中,常採用的氧化劑有NaCl0、H:0:等。主要是運用了氧化劑的強氧化性將選礦排放水中的有機物氧化分解,從而達到去除污染物的目的。鐵礦石破碎機和鐵礦石粉碎機的工作原理相似,只不過,前者顆粒較粗後者相反。試驗表明,用NaClO和H:0:作為氧化劑在酸性條件下的去除效果要比鹼性條件下的效果好,後者的效果也比前者的好。對黃葯試驗證明影響溶液中黃葯降解的因素的主次順序是漂白粉>pH值>氧化時間;理想降解條件為漂白粉加入量適量、pH=3、氧化時間3h,該條件下可將黃葯幾乎完全降解。

H. 汕尾市硫鐵礦廢水處理站怎麼樣

汕尾市硫鐵礦廢水處理站,本省范圍內,當前企業的注冊資本屬於一般。

通過網路企業信用查看汕尾市硫鐵礦廢水處理站更多信息和資訊。

I. 工業產生的廢渣、廢氣和廢水有哪些(寫出化學式)謝謝啦!

廢氣有很多阿,比如SO2\NO2\SO3……都可以用NaOH吸收

J. 鐵礦開采中如何進行環境保護治理方案包括污水與粉塵

粉塵治理採用濕式鑿岩,安裝噴霧裝置,定時噴霧除塵,施工廠出入口硬化,灑水防塵。污水治理主要採用沉澱。

閱讀全文

與藍鐵礦污水相關的資料

熱點內容
純水機怎麼選擇好 瀏覽:432
污水站需要貼哪些標識牌 瀏覽:625
污水處理泵站如何做 瀏覽:812
為什麼換了汽油濾芯沒什麼變化 瀏覽:613
進賢家用凈化器多少錢 瀏覽:463
煉一噸焦產生多少廢水 瀏覽:993
水蒸氣蒸餾的實驗PPT 瀏覽:31
邁銳寶汽車空調濾芯怎麼拆 瀏覽:348
凈水桶出水多少錢一滴 瀏覽:582
ppp污水治理 瀏覽:923
環氧樹脂鹽霧實驗 瀏覽:590
小米空氣凈化器濾芯怎麼復原 瀏覽:557
化妝品廢水處理 瀏覽:22
中空超濾膜組件價格 瀏覽:492
樹脂加膜鏡片耐高溫嗎 瀏覽:125
反滲透管爆裂怎麼處理 瀏覽:166
空調的過濾網中的小塊 瀏覽:463
牙齦萎縮樹脂填補 瀏覽:548
劣質過濾棉有泡泡 瀏覽:624
小米顯示純水TDS14什麼意思 瀏覽:955