A. 在污水指標中DO、NH4-N、SV、MLVS、VFA代表的意思
先指出你可能的表達錯誤,MLVS、VFA的正確寫法應該是MLVSS、VFAs。
這樣的話從左到右依次是溶解氧、氨氮、污泥沉降比、揮發性懸浮固體濃度、揮發性脂肪酸。
B. 污水處理中影響VFA高低的東西有哪些
主要是PH值和甲烷菌的適應性兩種因素。當然污水中的BOD和COD是VFA產生的原料,沒有內他們,也不會酸容化,但這是一項不可控指標,在處理VFA過高的過程不考慮這項指標
發揮性脂肪酸VFA不大於500mg/L,當VFA超過500-1000mg/L,厭氧反應器呈現酸化狀態,超過1000mg/L則表明已經酸化,需立即採取措施:
停止進料,進行菌種馴化,適當投加碳源(碳、氮、磷=比值300~500:5:1)。一般來講第二段到第三段也需30-40d時間。也可採用投加鹼性中和物的方式進行中和處理,優化甲烷菌的生存環境。
詳細查看:http://www.nmgjlscl.com/Item/Show.asp?m=1&d=3046
C. 請問污水檢測聯合滴定法測VFA、ALK,為何要先將樣品PH調到6.5,然後再調到3.0呢為什麼要分兩步調呢
兩步的差值也就是體抄積差值乘以濃度,再除以樣品體積數才是VFA值,否則分子只有濃度不能計算VFA。也就是消耗的NaOH體積得有個pH變化范圍作為界定條件。否則,沒法算出消耗的NaOH體積值,因為初始和末端pH你沒界定。
D. 污水厭氧過程中的揮發性脂肪酸(VFA)的測定,需要的試劑和儀器是什麼
揮發性脂肪酸的測定方法比較多,首先需要確定採用哪種方法,再根據方法確定試專劑和儀器屬。
最常見的酸化蒸餾滴定法,單單是NaOH標准溶液,就是需要電子天平、移液管、容量瓶、鹼式滴定管等儀器和玻璃器皿,還需要氫氧化鈉、鄰苯二甲酸氫鉀標准品、酚酞、乙醇等化學試劑。
VFA預處理還需要蒸餾瓶、接收瓶、冷凝管等玻璃器皿以及磷酸。
所以對照方法准備試劑和儀器比較好。
E. 關於污水處理廠的儀表的問題,如何解決
污水處理過程的監視與控制系統由模型、感測器、 局部調節器和上位監控策略等4個部分組成。其中, 感測器是污水處理廠監控系統中最薄弱,也是最重要、 最基礎的環節。 日益嚴格的污水排放標准導致了污水處理工藝流程和裝備的復雜化, 對用於污水處理過程監視與控制的感測器的性能也提出了更高的要求 ,促進了污水處理領域感測器技術的發展, 一些適用於污水處理過程的新型感測器相繼問世。 污水處理過程是復雜的生化反應過程,所涉及的儀器儀表種類繁多, 多數感測器是污水處理過程所特有的,分別應用於不同的場合, 反映一個或多個特定變數的狀態信息變化。 污水處理工藝一般由機械處理、生化處理和化學處理構成, 其中涉及液相、固相、氣相三種物質成分。 監視這些相態的儀表可以簡單地分為通用型和特殊性兩大類。 2、污水處理過程的通用儀表 通用測量儀表包括溫度、壓力、液位、流量、pH值、電導率、 懸浮固體等感測器。 ①厭氧消化過程由於常常實施溫度控制,溫度感測器顯得更加重要。 典型的溫度測量元件是熱電阻 ②壓力測量值常常用作曝氣和厭氧消化過程的報警參數。 ③液位測量用於水位監視,通常採用浮標、差壓變送器、容量測量、 超聲水位檢測等方法測量。 ④流量監測儀表主要有堪板、轉子流量計、渦輪式流量計、 靶式計量槽、電磁流量計、超聲波流量計等。 ⑤pH值是生化過程中的一個重要變數, 更是厭氧消化和硝化過程的關鍵值, 通常在污水處理廠都安裝有pH電極浸人污泥中, 通過不同的清潔策略可以實現長期免維護。 對於具有高度緩沖能力的廢水,pH值測量對過程變化可能不敏感, 因此不適合於過程監督與控制, 這種情況可以用碳酸鹽測量系統代替。 ⑥電導率感測器用於監視進水成分的變化, 同時也是化學除磷控制策略的基礎。 ⑦ 傳統的生物量測量是根據懸浮粒子對入射光的散射及吸光度進行估計 。隨著靈敏的光檢測儀的出現, 能夠自動進行光效應測量的感測器得以問世。 大多數商業感測器使用了一個發射低可視光或紅外光的光源, 在這個區域內大多數介質表現低吸光度。 生物量濃度也可根據超聲波在懸浮物和微生物之間游離溶液的速度差 確定。 3、厭氧消化過程中的感測器 生物氣流量的測量在厭氧消化過程中得到廣泛採用, 它可以表示反應器的總體活性。 近年來一些專用技術被用來監視氣體成分。 典型的實驗室方法是洗瓶分離方法, 根據進瓶前和出瓶後的流量比可以確定氣體成分。例如, 鹼洗瓶將能夠收集所有的C02、H2S而允許CH4通過。 更專業的氣體分析儀可以直接監視氣體成分含量, 如紅外吸收測量儀用來確定C02和CH4含量, 專用氫分析儀也已基於化學電源研製而成。 氣相H2S測量儀可以通過監視硫化物對鉛剝離的反應來確定H2S 含量。 基於氣體分析的監視系統的主要問題是不能直接預測液相中相應氣體 的濃度。可以直接測量溶解氫的浸入式感測器已經研製成功。 燃料電池是此種感測器的核心。 H2S和CH4的直接測量儀器至今未見報道。 pH測量不容易對不平衡厭氧消化槽進行檢測, 特別是當混合液的鹼度高時。 這種情況下可對混合液體中C02和碳酸鹽進行測量。 鹼度主要取決於碳酸鹽緩沖物, 因此常常被用於厭氧消化的控制策略中。 碳酸鹽監視器已被開發應用於實際厭氧消化過程。 估計碳酸鹽鹼度的基本原理有兩個。其一為滴定法, 先進的在線滴定感測器可以同時監視氨、碳酸鹽等不同的成分。 對鹼度進行在線確定的另一方法基於對樣品酸化而得到的氣態C02 的定量。可以採用氣體流量計測量所產生的氣體的體積。 所有的生物活性都可用熱量的產生來表徵。 通過熱量計對熱量的測量可以直接洞察生物過程變化。 污水處理過程首選的是流量熱量計。 揮發性脂肪酸(VFA)是厭氧消化過程最重要的中間產物。 他們的聚集會引起pH值的降低而導致過程厭氧消化過程的失敗。 通常通過VFA濃度監視作為過程性能指示, 但很少實施在線感測器。 最先進的測量儀器包括氣相色譜儀或高壓液相色譜儀。 傅立葉變換紅外光譜儀(FT-IR) 作為在線多參數感測器可以同時提供COD、TOC、 VFA等參數的測量。FT-IR不需要添加任何化學品, 且只需要很少的維護,但其校準比較困難。 更具可靠性的測量是採用滴定計通過兩步滴定或滴定反滴定提供采樣 中的VFA含量。 生物感測器近年來在污水處理行業得到發展應用。 VFA分析儀可以決定消化液體中VFA濃度; MAIA生物感測器可對代謝活性進行測量; RANTOX生物感測器用於檢測即將來臨的有機物過載及毒性負載 。 4、活性污泥過程中的感測器 氧在活性污泥過程中起著非常重要的作用, 且相關的曝氣費用約佔全部運行費用的40%, 因此氧感測器成為廢水處理廠最廣泛的測量監視儀表。 氧測量基於液體中擴散氧的電化學反應。溶解氧(DO) 感測器是可靠准確的測量儀表,但必須謹慎選擇合適的測量位置, 並防止結垢。目前自動清潔系統已經相當普遍, 一些裝備清潔系統並可進行自校準的溶解氧感測器已有應用。 DO感測器被廣泛用於曝氣過程的控制,節省了大量投資, 所獲得的信息也可用於監視任何活性污泥處理過程。 呼吸量是對活性污泥呼吸速率的測量與解釋, 定義為在單位時間內單位體積活性污泥中微生物所消耗的氧。 它是表徵廢水和污泥動力學的常用工具。 呼吸計實質上是一個反應器,測量結果易受實驗條件變動的影響。 廢水的生物可降解成分通過離線測量生物需氧量(BOD5) 的標准方法獲得。 BOD5是5天內有機溶質生物氧化所需溶解氧量。 BOD5實驗不適於自動監視和控制,因為完成實驗需要較長時間, 且很難達到一致的准確測量。 廢水負載的在線測量根據短期BOD估計實現。 目前使用的在線BODst方法有兩種: 呼吸測量儀和微生物感測器。 Vanrolleghem等提出的呼吸測量感測器RODTOX能 夠監視BODst和廢水潛在毒性。該感測器有由一個恆定曝氣、 完全混合的批反應器構成,內含10升污泥, 可以得到大動態范圍內BODs。微生物感測器由固化電池、 薄膜和一個溶解氧探測儀組成, 最適合包含多種微生物的活性污泥系統。為了維護其功效, 微生物BOD感測器需要精心維護與儲藏。 大多數微生物BOD感測器壽命較短,從幾天到幾個月。 廢水處理廠最廣泛監視的變數是化學需氧量COD。 COD自動監測儀可以每隔1~2小時進行一次自動監測, 根據氧化分解的條件分為酸性法監測儀和鹼性法監測儀。 COD實驗的主要限制是不能區分可生物降解和惰性有機物。 TOC表示污水中總有機碳的含量, 也是表徵水體受有機物污染程度的一個指標。 TOC測量的主要原理是將有機碳轉化為C02, 隨後在氣相中測量這種產物,據此求出水相中有機碳濃度。 典型的測量儀器是紅外線抽氣分析儀。 TOC被認為是一個很好的監視參數,特別是監視排水質量。 許多廢水成分吸收紫外光。 紫外線的吸收與廢水中的有機物有著密切的關系。 紫外線吸光度自動監測儀引人廢水處理系統用於檢測水污染程度或評 價排放質量。最近10年,光學技術取得顯著進步, 使遠程與多點測量成為可能,大大方便了污水處理過程監視的實施。 紅外光譜測量對於TOC、COD、 BOD等特殊參數的估計與在線監視具有很大潛力。 紅外光譜儀的主要缺點是光電池成分的結垢會引起靈敏度的降低, 需要頻繁重校。
F. 污水處理中的" 倒AAO工藝"說明,謝謝
http://down.sinoaec.com/tech/detailprof46081GP.htm
倒置A2/O工藝的原理與特點研究
摘要:通過短時厭氧環境的生化特性、厭氧/缺氧環境倒置效應和小型系統平行對比試驗,較系統地研究了倒置a2/o工藝的原理和工藝特點。指出:聚磷菌厭氧有效釋磷水平的充分與否,並不是決定其在後續曝氣條件下過度吸磷能力的充分必要條件。推進聚磷菌過度吸磷的本質動力與厭氧區hrt和厭氧環境的厭氧程度有關。
關鍵詞:污水處理 脫氮 除磷 倒置a2/o工藝
principle and characteristics of reversed a2/o process
zhang bo 1,gao ting yao 2
(1departof environeng,qing construction institute,qing 266033,china;2 state key labof pollution control and resource reuse,tongji univ,shanghai 200092, china)
abstract:the biochemical characteristics of short time retention in anaerobic zone and sequence reversing of anaerobic and anoxic zones on phosphorus release and uptakewere studied in bench scale experiments the results showed that:(1) the effective phosphorus release, fully or not, is not the sufficient and necessary condition deciding the ability of excess puptake to a certain extent,a relativelylonger hrt and a more sufficient anaerobic environment proce a stronger potential of excess puptake in the following aerobic condition(2) a much better effect of n-p removal can be obtained in biological nutrient removal process by reversing the position of anaerobic and anoxic zones and turning into reversed a2/o process its phosphorus and nitrogen removal rates are markedly higher thanthat of conventional a2/o process, whereas the cod removal rates are about equal
keywords: wastewater treatment;nitrogen removal;phosphorus removal;reversed a2/o process
常規生物脫氮除磷工藝呈厭氧(a1)/缺氧(a2)/好氧(o)的布置形式。該布置在理論上基於這樣一種認識,即:聚磷微生物有效釋磷水平的充分與否,對於提高系統的除磷能力具有極端重要的意義,厭氧區在前可以使聚磷微生物優先獲得碳源並得以充分釋磷〔1〕。但是,①由於存在內循環,常規工藝系統所排放的剩餘污泥中實際上只有一少部分經歷了完整的釋磷、吸磷過程,其餘則基本上未經厭氧狀態而直接由缺氧區進入好氧區,這對於除磷是不利的;②由於缺氧區位於系統中部,反硝化在碳源分配上居於不利地位,因而影響了系統的脫氮效果;③由於厭氧區居前,迴流污泥中的硝酸鹽對厭氧區產生不利影響,為了避免該影響而開發的一些新工藝(如uct等)趨於復雜化;④實際運轉經驗表明,按照缺氧—好氧兩段設計的脫氮工藝系統也常常表現出良好的除磷能力〔2、3〕。因此,常規生物脫氮除磷工藝(a1/a2/o)布置的合理性值得進一步探討。
1 材料與方法
活性污泥取自污水生物脫氮除磷小型試驗系統,污水取自實際城市污水。污水和污泥的性質見表1。
表1 污水和污泥的性質 污水 污泥
cod(mg/l) 400-800 mlss(g/l) 3.0-4.0
bod5(mg/l) 150-450 vss/ss 0.60-0.64
tn(mg/l) 45-65 n含量(mgn/gvss) 110-130
tp(mg/l) 2.5-10.0 p含量(mgn/gvss) 48-60
vfa(mg/l) 25-173 svi 180-230
2 試驗結果與討論
2 1短時厭氧環境及其對聚磷菌的影響
短時厭氧環境在生物脫氮除磷系統中具有關鍵性作用,本試驗目的是考察短時厭氧環境的生化特性及其對聚磷菌釋、吸磷行為的影響。
G. 廢水處理過程中好氧池pH升高,是什麼原因
因為厭氧池反應消耗VFA產生水和甲烷還有二氧化碳,二氧化碳溶於水,產生碳酸,碳版酸屬於弱酸權,容易揮發,廢水經過厭氧處理排出時,碳酸分解,產生水和二氧化碳,ph值就會升高。
通過物理作用分離、回收廢水中不溶解的懸浮狀態污染物(包括油膜和油珠)的方法,可分為重力分離法、離心分離法和篩濾截留法等。屬於重力分離法的處理單元有沉澱、上浮(氣浮)等,相應使用的處理設備是沉砂池、沉澱池、隔油池、氣浮池及其附屬裝置。
離心分離法本身就是一種處理單元,使用的處理裝置有離心分離機和水旋分離器等。篩濾截留法有柵篩截留和過濾兩種處理單元,前者使用的處理設備是格柵、篩網,而後者使用的是砂濾池和微孔濾機等。
以熱交換原理為基礎的處理方法也屬於物理處理法,其處理單元有蒸發、結晶。
一種去除廢水中有機物的方法是活性炭吸附法。活性炭處理可以與活性污泥法一同使用,在這一過程中使用粉末活性炭。粉末活性炭可吸附那些對微生物有毒的物質,並最終同污泥一起收集。活性炭法在污水處理過程中存在的最主要的危險是失效的活性炭可能一直存在於水中。
H. 含磷廢水怎麼處理
一、生物法
20世紀70年代美國的Spector發現,微生物在好氧狀態下能攝取磷,而在有機物存在的厭氧狀態下放出磷。含磷廢水的生物處理方法便是在此基礎上逐步形成和完善起來的。
目前,國外常用的生物脫磷技術主要有3種:
1、向曝氣貯水池中添加混凝劑脫磷;
2、利用土壤處理,正磷酸根離子會與土壤中的Fe和Al的氧化物反應或與粘土中的OH-或SiO22-進行置換,生成難溶性磷酸化合物;
3、活性污泥法,這是目前國內外應用最為廣泛的一類生物脫磷技術。
生物除磷法具有良好的處理效果,沒有化學沉澱法污泥難處理的缺點,且不需投加沉澱劑。對於二級活性污泥法工藝,不需增加大量設備,只需改變運轉流程即可達到生物除磷的效果。
但要求管理較嚴格,為了形成VFA,要保證厭氧階段的厭氧條件。
二、化學沉澱法
通過投加化學沉澱劑與廢水中的磷酸鹽生成難溶沉澱物,可把磷分離出去,同時形成的絮凝體對磷也有吸附去除作用。
常用的混凝沉澱劑有石灰、明礬、氯化鐵,石灰與氯化鐵的混合物等。影響此類反應的主要因素是pH、濃度比、反應時間等。
三、生物強化除磷
生物強化除磷中的聚磷菌利用比較普遍,目前也是生物除磷的主要研究方向。
聚磷菌也叫做攝磷菌、除磷菌,是傳統活性污泥工藝中一類特殊的細菌,在好氧狀態下能超量地將污水中的磷吸入體內,使體內的含磷量超過一般細菌體內的含磷量的數倍,這類細菌被廣泛地用於生物除磷。
其原理為:在厭氧條件下,除磷菌能分解體內的聚磷酸鹽而產生ATP,並利用ATP將廢水中的有機物攝入細胞內,以聚b-羥基丁酸等有機顆粒的形式貯存於細胞內,同時還將分解聚磷酸鹽所產生的磷酸排出體外。
而好氧條件下,除磷菌利用廢水中的BOD5或體內貯存的聚b-羥基丁酸的氧化分解所釋放的能量來攝取廢水中的磷,一部分磷被用來合成ATP,另外絕大部分的磷則被合成為聚磷酸鹽而貯存在細胞體內。
四、吸附法
20世紀80年代,多孔隙物質作為吸附劑和離子交換劑就已應用在水的凈化和控制污染方面。黃巍等人以粉煤灰作為吸附劑,對含磷50~120mg/L模擬廢水脫磷的規律特徵進行了研究。
研究表明粉煤灰中含有較多的活性氧化鋁和氧化硅等,具有相當大的吸附作用,粉煤灰對無機磷酸根不是單純吸附,其中CaO、FeO、Al2O3等可以和磷酸根生成不溶或直溶性沉澱現象,因而在廢水處理方面具有廣闊的應用前景。
五、其他的除磷方法
鄒偉國等研究的新型雙污泥脫氮除磷工藝系統處理生活污水取得成功。傳統的脫氮除磷工藝多採用單污泥系統,因此存在著硝化和除磷泥齡之間的矛盾,將活性污泥法與生物膜法相結合,可解決這個問題。
實驗結果表明,該工藝對PO43-的去除率達到了90%,處理效果穩定,對水質的適應能力很強。
陳瀅等進行了低溶解氧SBR除磷工藝的研究。
該方法要注意的是污泥負荷對COD去除率和除磷效果的影響較大,因此要選擇合適的污泥負荷。污泥負荷過高時會導致非絲菌污泥膨脹。
方茜等利用SBR法處理低碳城市污水取得進展,解決了處理碳、氮、磷比例失調(碳量偏低)城市污水如何保證氮磷高效去除的難點。
結果表明,利用此法處理廣州地區低碳城市污水,出水有機物、氨氮及總磷均達標,且磷的釋放量越大則出水磷總濃度就越低。實踐證明,SBR法具有流程簡單,不需要污泥迴流,脫氮除磷效果好的特點。
I. VFA和ALK在廢水化學分析中中文是什麼意思
VFA表示的是厭氧處理系統內的揮發性有機酸的含量,ALK則表示的是厭氧處理系統內的鹼度
J. 污水處理中厭氧的VFA一般和其他什麼指標一起來監測水質的好壞
VFA一般和鹼度、pH一起來檢測水質的好壞,,一般厭氧VFA在2~3mmol為較好,超過為產甲烷內菌受到抑制,產酸富集,系統容pH酸性,此時鹼度較低,需要在進水前加入適當加入鹼調節,並且同時降低進水負荷。
若低於上述數值,為產酸菌受到抑制,鹼度過高,進水營養不夠,此時需要加大進水量,同時檢測出水pH和VFA、鹼度,合格後穩定運行。