導航:首頁 > 蒸餾問題 > 廢乙醇的蒸餾與沸點的測定

廢乙醇的蒸餾與沸點的測定

發布時間:2025-03-19 19:02:13

① 柴油的測定方法

按SH/T0175方法進行測定
方法概要:將以過濾過的350mL試樣,注入氧化管,通入氧氣,速率為50 mL /min在93℃的溫度下氧化16h。然後將氧化後的試樣冷卻到室溫,過濾得到的可過濾的不溶物。用三合劑把粘附性不溶物從氧化管上洗下來,把三合劑蒸發除去,得到的粘附性不溶物。可過濾不溶物和粘附性不溶物的量之和為總不溶物量 按GB/T 380方法進行測定
方法概要:將適量樣品在燈中燃燒,用0.3%碳酸鈉水溶液吸收燃燒生成的二氧化硫,並用0.05N的鹽酸標准溶液滴定吸收液,用溴甲酚綠甲基紅作滴定指示劑 按GB/T 258方法進行測定
方法概要:容量法,本方法系用沸騰的乙醇抽出輕柴油中的有機酸,然後趁熱用0.05N氫氧化鉀乙醇溶液滴定,中和100亳升石油產品所需氫氧化鉀的毫升數稱為酸度 按GB/T 386方法進行測定
十六烷值是指與柴油自燃性相當的標准燃料中所含正十六烷的體積百分數。標准燃料是用正十六烷與2-甲基萘按不同體積百分數配成的混合物。其中正十六烷自燃性好,設定其十六烷值為100,α-甲基萘(1-甲基萘)自燃性差,設定其十六烷值為0。也有以2、2、4、4、6、8、8-七甲基壬烷代替α-甲基萘(1-甲基萘),設定其十六烷值為15,十六烷值測定是在實驗室標準的單缸柴油機上按規定條件進行的。十六烷值高的柴油容易起動,燃燒均勻,輸出功率大;十六烷值低,則著火慢,工作不穩定,容易發生爆震。一般用於高速柴油機的輕柴油,其十六烷值以40-55為宜;中、低速柴油機用的重柴油的十六烷值可低到35以下。柴油十六烷值的高低與其化學組成有關,正構烷烴的十六烷值最高,芳烴的十六烷值最低,異構烷烴和環烷烴居中。當十六烷值高於50後,再繼續提高對縮短柴油的滯燃期作用已不大;相反,當十六烷值高於65時,會由於滯燃期太短,燃料未及與空氣均勻混合即著火自燃,以致燃燒不完全,部分烴類熱分解而產生游離碳粒,隨廢氣排出,造成發動機冒黑煙及油耗增大,功率下降。加添加劑可提高柴油的十六烷值,常用的添加劑有硝酸戊酯或已酯。 按GB/T 268方法進行測定
方法概要:將適量的試樣置於坩堝內進行分解蒸餾,殘余物經強烈加熱發生裂化和焦化反應,在加熱30±2分鍾後,通過炭殘余物的質量計算出殘炭值 按GB/T 508方法進行測定
方法概要:將不超過100克的試樣放在一已恆重的坩堝中,用電熱板加熱,無灰濾紙作引火芯,使其燃燒到只剩下灰分和殘炭後置於775±25℃高溫爐中保持1.5~2小時,通過稱量得到灰分結果。 按GB/T 261方法進行測定
方法概要:試樣在連續攪拌下用很慢的恆定的速率加熱。在規定的溫度間隔,同時在中斷攪拌的情況下,將一小火焰引入杯內。試驗火焰引起試樣上的蒸氣閃火時的最低溫度作為閃點。10、5、0、-10、-20號柴油的閉口閃點為55℃,-35和-50號柴油為45℃。 按GB/T 1884和GB/T 1885方法進行測定
0號柴油的密度在標准溫度20℃,一般是0.84--0.86g/cm³之間。
方法概要:使試樣處於規定溫度,將其倒入溫度大致相同的密度計量筒中,將合適的密度計放入已調好溫度的試樣中,讓它靜止。當溫度達到平衡後,讀取密度計讀數和試樣溫度。用石油計量表把觀察到的密度計讀數換算成標准密度。 按GB/T 510方法進行測定
凝點是評定柴油流動性的重要指標,它表示燃料不經加熱而能輸送的最低溫度。柴油的凝點是指油品在規定條件下冷卻至喪失流動性時的最高溫度。柴油中正構烷烴含量多且沸點高時,凝點也高。一般選用柴油的凝點低於環境溫度3℃~5℃,因此,隨季節和地區的變化,需使用不同牌號,即不同凝點的商品柴油。在實際使用中,柴油在低溫下會析出結晶體,晶體長大到一定程度就會堵塞濾網,這時的溫度稱作冷濾點。與凝點相比,它更能反映實際使用性能。對同一油品,一般冷濾點比凝點高1℃ ~3℃。採用脫蠟的方法,可降低凝點,得到低凝柴油。 ( Ignitability):
高速柴油機要求柴油噴入燃燒室後迅速與空氣形成均勻的混合氣,並立即自動著火燃燒,因此要求燃料易於自燃。從燃料開始噴入氣缸到開始著火的間隔時間稱為滯燃期或著火落後期。燃料的自燃點(在空氣存在下能自動著火的溫度)低,則滯燃期短,即著火性能好。 按GB/T 5096方法進行測定
方法概要:把一塊已磨光好的銅片浸沒在一定量的試樣中,並按產品標准要求加熱到指定的溫度,保持一定的時間。待試驗周期結束時,取出銅片,經洗滌後與腐蝕標准色板進行比較,確定腐蝕級別。 按GB/T 260方法進行測定
方法概要:將一定量試樣與100mL無水溶劑混合後進行蒸餾不超過1小時,按接收器中收集的水體積計算出試樣水分。 按GB/T 511方法進行測定
方法概要:將一定量的試樣溶於適量的溫熱的溶劑油中,用已恆重的濾器過濾,通過稱重被留在濾器上的雜質,求得試樣的機械雜質含量。

② 常壓蒸餾及沸點的測定實驗後的各種物質如何處理更合理

回收和再利用、妥善處理有害物質等。
回收和再利用:對於實驗中使用的有機溶劑,可以根據其性質進行回收和再利用,例如如果使用了大量乙醇,可以考慮將其回收並用於其他實驗或生產過程。
妥善處理有害物質:對於實驗中產生的有害物質,如重金屬鹽、有機廢液等,應該按照相關規定進行妥善處理,例如可以將重金屬鹽進行酸化處理,使其轉化為不溶性鹽類並集中處理。有機廢液可以通過蒸餾、萃取等方法進行分離和回收。

③ 土壤化學指標

一、土壤酸鹼度(pH值)

土壤酸鹼度對土壤肥力及植物生長影響很大,我國西北、北方不少土壤pH值大,南方紅壤pH值小。因此可以種植和土壤酸鹼度相適應的作物和植物。如紅壤地區可種植喜酸的茶樹,而苜蓿的抗鹼能力強等。土壤酸鹼度對養分的有效性影響也很大,如中性土壤中磷的有效性大;鹼性土壤中微量元素(錳、銅、鋅等)有效性差。在農業生產中應該注意土壤的酸鹼度,積極採取措施,加以調節。

1.電位法

土壤實驗室基本上都採用電位法測定土壤pH值,電位法有準確、快速、方便等優點。其基本原理是:用pH計測定土壤懸濁液的pH值時,由於玻璃電極內外溶液H離子活度的不同產生電位差。

2.比色法

取土壤少許(約黃豆大),弄碎後放在白磁碟中,滴入土壤混合指示劑數滴,到土壤全部濕潤,並有少量剩餘。震盪磁碟,使指示劑與土壤充分作用,靜置1min,和標准比色卡比色,即得出土壤的酸鹼度。

3.原位酸鹼度感測器法

土壤原位pH測定儀可直接埋入土壤測試,直接讀數,非常方便,在指導農業科研及農業生產中起到了非常重要的作用。

二、土壤氧化還原電位(Eh)

土壤氧化還原電位是以電位反映土壤溶液中氧化還原狀況的一項指標,用Eh表示,單位為mV。

土壤氧化還原電位的高低,取決於土壤溶液中氧化態和還原態物質的相對濃度,一般採用鉑電極和飽和甘汞電極電位差法進行測定。影響土壤氧化還原電位的主要因素有:①土壤通氣性;②土壤水分狀況;③植物根系的代謝作用;④土壤中易分解的有機質含量。

旱地土壤的正常Eh為200~750mV,若Eh﹥750mV,則土壤完全處於氧化狀態,有機質消耗過快,有些養料由此喪失有效性,應灌水適當降低Eh。若Eh﹤200mV,則表明土壤水分過多,通氣不良,應排水或鬆土以提高其Eh值。

水田土壤Eh變動較大,在淹水期間Eh值可低至-150mV,甚至更低;在排水曬田期間,土壤通氣性改善,Eh值可增至500mV以上。一般地說,稻田適宜的Eh值在200~400mV之間,若Eh經常在180mV以下或低於100mV,則水稻分櫱或生長發育受阻。若長期處於-100mV以下,水稻會嚴重受害甚至死亡,此時應及時排水曬田以提高其Eh值。

1.二電極法

測定氧化還原電位的常用方法是鉑電極直接測定法,方法是基於鉑電極本身難以腐蝕、溶解,可作為一種電子傳導體。當鉑電極與介質(土壤、水)接觸時,土壤或水中的可溶性氧化劑或還原劑,將從鉑電極上接受電子或給予電子,直至在鉑電極上建立起一個平衡電位,即該體系的氧化還原電位。由於單個電極電位是無法測得的,故須與另一個電極電位固定的參比電極(飽和甘汞電極)構成電池,用電位計測量電池電動勢,然後計算出鉑電極上建立的平衡電位,即氧化還原電位Eh值。

2.去極化測定儀法

對復雜的介質,可採用去極化法測定氧化還原電位。可以在較短時間內得到較為精確的結果,用去極化法測得的平衡Eh值,與直接電位法平衡48h後測得的穩定Eh值,差數一般﹤10mV。所以去極化法能縮短測定時間,並有較高的測定精度。

將鉑電極接到極化電壓的正端(極化電壓為600mV或750mV),以銀-氯化銀電極作為輔助電極,接到電源的負端,陽極極化10 s以上(自由選擇)。接著切斷極化電源,進行去極,時間在20 s以上(視極化曲線而定),在去極化後監測鉑電極的電位(對甘汞電極),對於大多數的測試樣品,電極電位E(mV)和去極化時間的對數log t間存在直線關系。以相同的方法進行陰極極化和隨後的去極化和監測電位。陽極去極化曲線與陰極去極化曲線的延長線的交點相當於平衡電位。

三、土壤陽離子交換量(CEC)

CEC的大小,基本上代表了土壤可能保持的養分數量,即保肥性的高低。陽離子交換量的大小,可作為評價土壤保肥能力的指標。陽離子交換量是土壤緩沖性能的主要來源,是改良土壤和合理施肥的重要依據。

1.乙酸銨交換法

適用於酸性與中性土壤陽離子交換量的測定。原理:用1mol/L乙酸銨溶液(pH7.0)反復處理土壤,使土壤成為銨離子飽和土。過量的乙酸銨用95%乙醇洗去,然後加氧化鎂,用定氮蒸餾方法進行蒸餾,蒸餾出的氨用硼酸溶液吸收,然後用鹽酸標准溶液滴定,根據銨離子的量計算土壤陽離子交換量。

2.EDTA——銨鹽法

銨鹽法不僅適用於中性、酸性土壤,並且適用於石灰性土壤陽離子交換量的測定。採用0.005mol/L EDTA與1mol/L的醋酸銨混合液作為交換劑,在適宜的pH條件下(酸性土壤pH7.0,石灰性土壤pH8.5),這種交換配合劑可以與2價鈣離子、鎂離子和3價鐵離子、鋁離子進行交換,並在瞬間即形成電離度極小而穩定性較大的配合物,不會破壞土壤膠體,加快了2價以上金屬離子的交換速度。同時由於醋酸緩沖劑的存在,對於交換性氫和1價金屬離子也能交換完全,形成銨質土,再用95%酒精洗去過剩的銨鹽,用蒸餾法測定交換量。對於酸性土壤的交換液,同時可以用作為交換性鹽基組成的待測液用。

3.氯化鋇-硫酸強迫交換法

土壤中存在的各種陽離子可被氯化鋇(BaCl2)水溶液中的陽離子(Ba2+)等價交換。土壤用BaCl2溶液處理,使之和Ba2+飽和,洗去剩餘的BaCl2溶液後,再用強電解質硫酸溶液把交換到土壤中的Ba2+交換下來,由於形成了硫酸鋇(BaSO4)沉澱,而且氫離子(H)的交換吸附能力很強,使交換反應基本趨於完全。這樣可以通過計算消耗硫酸的量,計算出陽離子交換量。

四、土壤鹼化度(ESP)

土壤的鹼化度是用Na的飽和度來表示,它是指土壤膠體上吸附的交換性Na占陽離子交換量的百分率。當鹼化度達到一定程度時,土壤的理化性質會發生一系列的變化,土壤呈極強的鹼性反應pH﹥8.5甚至超過10.0,且土粒分散、濕時泥濘、不透氣、不透水、干時硬結、耕性極差,土壤理化性質所發生的這一系列變化稱為鹼化作用。鹼化度是鹽鹼土分類、利用、改良的重要指標。一般把鹼化度﹥20%定為鹼土,5%~20%定為鹼化土(15%~20%為強鹼化土,10%~15%為中度鹼化土,5%~10%為輕度鹼化土)。

計算公式:

鹼化度=(交換性鈉/陽離子交換量)× 100%

式中:交換性鈉[cmol(Na)/kg]用乙酸銨-氫氧化鈉銨交換-火焰光度法測得;陽離子交換量[cmol(+)/kg]用氯化銨-乙酸銨交換法測得。

五、土壤水溶性全鹽量(易溶鹽)

土壤水溶性鹽是鹽鹼土的一個重要屬性,是限製作物生長的障礙因素。我國的鹽鹼土分布廣,面積大,類型多。在乾旱、半乾旱地區鹽漬化土壤,以水溶性的氯化物和硫酸鹽為主。濱海地區由於受海水浸漬,生成濱海鹽土,所含鹽分以氯化物為主。在我國南方(福建、廣東、廣西等省區)沿海還分布著一種反酸鹽土。鹽土中含有大量水溶性鹽類,影響作物生長,同一濃度的不同鹽分危害作物的程度也不一樣。鹽分中以碳酸鈉的危害最大,增加土壤鹼度和惡化土壤物理性質,使作物受害。其次是氯化物,氯化物又以MgCl2的毒害作用較大,另外,氯離子和鈉離子的作用也不一樣。

土壤(及地下水)中水溶性鹽的分析,是研究鹽漬土鹽分動態的重要方法之一,對於了解鹽分對種子發芽和作物生長的影響以及擬訂改良措施都是十分必要的。

1.電導法

土壤中的水溶性鹽是強電介質,其水溶液具有導電作用,導電能力的強弱可用電導率表示。在一定濃度范圍內,溶液的含鹽量與電導率呈正相關,含鹽量愈高,溶液的滲透壓愈大,電導率也愈大。土壤水浸出液的電導率用電導儀測定,直接用電導率數值表示土壤的含鹽量。

2.質量法

吸取一定量的土壤浸出液放在瓷蒸發皿中,在水浴上蒸干,用過氧化氫(H2O2)氧化有機質,然後在105~110℃烘箱中烘乾,稱重,即得烘乾殘渣質量。

六、土壤養分元素

土壤養分元素是指由土壤提供的植物生長所必需的營養元素,能被植物直接或者轉化後吸收。土壤養分可大致分為大量元素、中量元素和微量元素,包括氮(N)、磷(P)、鉀(K)、鈣(Ca)、鎂(Mg)、硫(S)、鐵(Fe)、硼(B)、鉬(Mo)、鋅(Zn)、錳(Mn)、銅(Cu)和氯(Cl)等13種。在自然土壤中,土壤養分主要來源於土壤礦物質和土壤有機質,其次是大氣降水、坡滲水和地下水。在耕作土壤中,還來源於施肥和灌溉。

根據在土壤中存在的化學形態,土壤養分的形態分為:①水溶態養分,土壤溶液中溶解的離子和少量的低分子有機化合物;②代換態養分,水溶態養分的來源之一;③礦物態養分,大多數是難溶性養分,有少量是弱酸溶性的(對植物有效);④有機態養分,礦質化過程的難易強度不同。

根據植物對營養元素吸收利用的難易程度,土壤養分又分為速效性養分和遲效性養分。一般來說,速效養分僅占很少部分,不足全量的1%。應該注意的是速效養分和遲效養分的劃分是相對的,兩者是處於動態平衡之中。

土壤養分的總儲量中,有很小一部分能為當季作物根系迅速吸收同化的養分,稱速效性養分;其餘絕大部分必須經過生物的或化學的轉化作用方能為植物所吸收的養分,稱遲效性養分。一般而言,土壤有效養分含量約占土壤養分總儲量的百分之幾至千分之幾或更少。故在農業生產中,作物經常出現因某些有效養分供應不足而發生缺素症的現象。

1.全氮測定法

(1)開氏定氮法。土壤、植株和其他有機體中全氮的測定通常都採用開氏消煮法,用硫酸鉀-硫酸銅-硒粉做加速劑。此法雖然消煮時間長,但控制好加速劑的用量,不易導致氮素損失,消化程度容易掌握,測定結果穩定,准確度較高,適用於常規分析。

土壤中的含氮有機化合物在加速劑的參與下,經濃硫酸消煮分解,有機氮轉化為銨態氮,鹼化後把氨蒸餾出來,用硼酸吸收,標准酸滴定,求出全氮含量。硫酸鉀起提高硫酸溶液沸點的作用,硫酸銅起催化劑作用,加速有機氮的轉化,硒粉是一種高效催化劑,用量不宜過多,否則會引起氮素損失。

(2)半微量開氏法。樣品在加速劑的參與下,用濃硫酸消煮時,各種含氮有機化合物,經過復雜的高溫分解反應,轉化為銨態氮。鹼化後蒸餾出來的氨用硼酸吸收,以標准酸溶液滴定,求出土壤全氮含量(不包括全部硝態氮)。

包括硝態和亞硝態氮的全氮測定,在樣品消煮前,需先用高錳酸鉀將樣品中的亞硝態氮氧化為硝態氮後,再用還原鐵粉使全部硝態氮還原,轉化為銨態氮。

2.全磷硫酸-高氯酸消煮測定法

在高溫條件下,土壤中含磷礦物及有機磷化合物與高沸點的硫酸和強氧化劑高氯酸作用,使之完全分解,全部轉化為正磷酸鹽而進入溶液,然後用鉬銻抗比色法測定。

3.全鉀測定法

土壤中的有機物先用硝酸和高氯酸加熱氧化,然後用氫氟酸分解硅酸鹽等礦物,硅與氟形成四氟化硅逸去。繼續加熱至剩餘的酸被趕盡,使礦質元素變成金屬氧化物或鹽類。用鹽酸溶液溶解殘渣,使鉀轉變為鉀離子。經適當稀釋後用火焰光度法或原子吸收分光光度法測定溶液中的鉀離子濃度,再換算為土壤全鉀含量。

4.鹼解氮測定法

土壤水解性氮或稱鹼解氮包括無機態氮(銨態氮、硝態氮)及易水解的有機態氮(氨基酸、醯銨和易水解蛋白質)。用鹼液處理土壤時,易水解的有機氮及銨態氮轉化為氨,硝態氮則先經硫酸亞鐵轉化為銨。以硼酸吸收氨,再用標准酸滴定,計算水解性氮含量。

5.速效磷測定法

(1)碳酸氫鈉法。石灰性土壤由於存在大量的游離碳酸鈣,不能用酸溶液來提取速效磷,可用碳酸鹽的鹼溶液。由於碳酸根的同離子效應,碳酸鹽的鹼溶液降低了碳酸鈣的溶解度,也就降低了溶液中鈣的濃度,這樣就有利於磷酸鈣鹽的提取。同時由於碳酸鹽的鹼溶液也降低了鋁和鐵離子的活性,有利於磷酸鋁和磷酸鐵的提取。此外,碳酸氫鈉鹼溶液中存在著OH-

等陰離子有利於吸附態磷的交換,因此,碳酸氫鈉不僅適用於石灰性土壤,也適用於中性和酸性土壤中速效磷的提取。待測液用鉬銻抗混合顯色劑在常溫下進行還原,使黃色的銻磷鉬雜多酸還原成為磷鉬藍進行比色。

(2)鉬銻抗比色法。酸性土壤中的磷主要是以Fe—P、Al—P的形態存在,利用氟離子在酸性溶液中有配合Fe3+,Al3+的能力,可使這類土壤中比較活性的磷酸鐵鋁鹽被陸續活化釋放,同時由於H的作用,也能溶解出部分活性較大的Ca—P,然後用鉬銻抗比色法進行測定。

6.速效鉀測定法

用1mol/L NH4OAc浸提土壤,可將膠體表面吸附的鉀離子全部浸提出來,而與黏土礦物晶格固定的鉀截然分開。

7.有機質重鉻酸鉀容量測定法

在加熱的條件下,用過量的重鉻酸鉀-硫酸(K2Cr2O7-H2SO4)溶液,來氧化土壤有機質中的碳,

等被還原成Cr+3,剩餘的重鉻酸鉀(K2Cr2O7)用硫酸亞鐵(FeSO4)標准溶液滴定,根據消耗的重鉻酸鉀量計算出有機碳量,再乘以常數1.724,即為土壤有機質量。

七、土壤重金屬

土壤的重金屬主要包括汞(Hg)、鎘(Cd)、鉛(Pb)、鉻(Cr)和類金屬砷(As)等生物毒性顯著的元素,以及有一定毒性的鋅(Zn)、銅(Cu)、鎳(Ni)等元素。主要來自農葯、廢水、污泥和大氣沉降等,如汞主要來自含汞廢水,鎘、鉛污染主要來自冶煉排放和汽車廢氣沉降,砷則被大量用作殺蟲劑、殺菌劑、殺鼠劑和除草劑。過量重金屬可引起植物生理功能紊亂、營養失調,鎘、汞等元素在作物子實中富集系數較高,即使超過食品衛生標准,也不影響作物生長、發育和產量,此外汞、砷能減弱和抑制土壤中硝化、氨化細菌活動,影響氮素供應。重金屬污染物在土壤中移動性很小,不易隨水淋濾,不為微生物降解,通過食物鏈進入人體後,潛在危害極大,應特別注意防止重金屬對土壤的污染。一些礦山在開采中尚未建立石排場和尾礦庫,廢石和尾礦隨意堆放,致使尾礦中富含難降解的重金屬進入土壤,加之礦石加工後餘下的金屬廢渣隨雨水進入地下水系統,造成嚴重的土壤重金屬污染。

1.原子吸收分光光度法

原子吸收分光光度法的測量對象是呈原子狀態的金屬元素和部分非金屬元素,是由待測元素燈發出的特徵譜線通過供試品經原子化產生的原子蒸氣時,被蒸氣中待測元素的基態原子所吸收,通過測定輻射光強度減弱的程度,求出供試品中待測元素的含量。原子吸收一般遵循分光光度法的吸收定律,通常借比較對照品溶液和供試品溶液的吸光度,求得供試品中待測元素的含量。所用儀器為原子吸收分光光度計,它由光源、原子化器、單色器、背景校正系統、自動進樣系統和檢測系統等組成。

2.X射線熒光光譜(XRF)法

XRF法是介於原子發射光譜(AES)和原子吸收光譜(AAS)之間的光譜分析技術。它的基本原理是基態原子(一般蒸氣狀態)吸收合適的特定頻率的輻射而被激發至高能態,而後激發過程中以光輻射的形式發射出特徵波長的熒光。該方法可定量分析測量待測元素的原子蒸氣在一定波長的輻射能激發下發射的熒光強度。原子熒光的波長在紫外、可見光區。氣態自由原子吸收特徵波長的輻射後,原子的外層電子從基態或低能態躍遷到高能態,經10~8 s,又躍遷至基態或低能態,同時發射出熒光。若原子熒光的波長與吸收波長相同,稱為共振熒光;若不同,則稱為非共振熒光。共振熒光強度大,分析中應用最多。在一定條件下,共振熒光強度與樣品中某元素濃度成正比。該法的優點是靈敏度高,譜線簡單;在低濃度時校準曲線的線性范圍寬達3~5個數量級,特別是用激光做激發光源時更佳。主要用於金屬元素的測定,在環境科學、高純物質、礦物、水質監控、生物製品和醫學分析等方面有廣泛的應用。

3.電感耦合等離子光譜(ICP)法

高頻振盪器發生的高頻電流,經過耦合系統連接在位於等離子體發生管上端,銅制內部用水冷卻的管狀線圈上。石英製成的等離子體發生管內有3個同軸氫氣流經通道。冷卻氣(Ar)通過外部及中間的通道,環繞等離子體起穩定等離子體炬及冷卻石英管壁,防止管壁受熱熔化的作用。工作氣體(Ar)則由中部的石英管道引入,開始工作時啟動高壓放電裝置讓工作氣體發生電離,被電離的氣體經過環繞石英管頂部的高頻感應圈時,線圈產生的巨大熱能和交變磁場,使電離氣體的電子、離子和處於基態的氖原子發生反復猛烈的碰撞,各種粒子的高速運動,導致氣體完全電離形成一個類似線圈狀的等離子體炬區面,此處溫度高達6000~10 000℃。樣品經處理製成溶液後,由超霧化裝置變成全溶膠由底部導入管內,經軸心的石英管從噴嘴噴入等離子體炬內。樣品氣溶膠進入等離子體焰時,絕大部分立即分解成激發態的原子、離子狀態。當這些激發態的粒子回收到穩定的基態時要放出一定的能量(表現為一定波長的光譜),測定每種元素特有的譜線和強度,和標准溶液相比,就可以知道樣品中所含元素的種類和含量。

發射光譜分析方法只要將待測原子處於激發狀態,便可同時發射出各自特徵譜線同時進行測定。ICP-AES儀器,不論是多道直讀還是單道掃描儀器,均可以在同一試樣溶液中同時測定大量元素(30~50個,甚至更多)。已有文獻報道的分析元素可達78個,即除He,Ne,Ar,Kr,Xe惰性氣體外,自然界存在的所有元素,都已有用ICP-AES法測定的報告。

④ 萃取和蒸餾的區別

萃取蒸餾是化學上常用的分離液體混合物的實驗方法,那麼二者有什麼區別呢?下面是我給大家整理的萃取和蒸餾的區別,供大家參閱!

萃取和蒸餾的區別

蒸餾是一種熱力學的分離工藝,它利用混合液體或液-固體系中各組分沸點不同,使低沸點組分蒸發,再冷凝以分離整個組分的單元操作過程,是蒸發和冷凝兩種單元操作的聯合。與其它的分離手段,如萃取、過濾結晶等相比,它的優點在於不需使用系統組分以外的其它溶劑,從而保證不會引入新的雜質。

萃取,又稱溶劑萃取或液液萃取,亦稱抽提,是利用系統中組分在溶劑中有不同的溶解度來分離混合物的單元操作。即,是利用物質在兩種互不相溶(或微溶)的溶劑中溶解度或分配系數的不同,使溶質物質從一種溶劑內轉移到另外一種溶劑中的方法。廣泛應用於化學、冶金、食品等工業,通用於石油煉制工業。另外將萃取後兩種互不相溶的液體分開的操作,叫做分液。

固-液萃取,也叫浸取,用溶劑分離固體混合物中的組分,如用水浸取甜菜中的糖類;用酒精浸取黃豆中的豆油以提高油產量;用水從中葯中浸取有效成分以製取流浸膏叫“滲瀝”或“浸瀝”。

雖然萃取經常被用在化學試驗中,但它的操作過程並不造成被萃取物質化學成分的改變(或說化學反應),所以萃取操作是一個物理過程。

萃取是有機化學實驗室中用來提純和純化化合物的手段之一。通過萃取,能從固體或液體混合物中提取出所需要的物質。

蒸餾分類介紹

蒸餾可以分為有塔蒸餾和無塔蒸餾。

從世界蒸餾發展史看,3000--5000年前,酒類生產中,就有了分離提純要求。

但長期酒的含量在15--20度左右,經歷了無數發明家攻關,雛型分離裝置面世,42--56度含量乙醇是一個提純高峰,也就是現在白酒的含量范圍。

200多年前,法國發明家採用蒸餾豎塔,生產出了95%含量乙醇,獲得了蒸餾界的公認記錄,30多年後,英國發明家在蒸餾豎塔基礎上,發明了精餾塔,生產出了99--99.9%乙醇,第一次產生了“酒精”一詞,含義是酒的精華。甲醇或乙醇生產廠,林立的高20--120米,塔徑0.3--13.5米蒸餾【精餾】塔,結構多樣塔,均源於法國和英國發明家產品,蒸餾【精餾】塔最大年生產量可達5--30萬噸,是有機溶劑主要提純方法。

2005年開始,安陽市海川化工研究所(原安陽高新區當代化工研究所),開始獨具特色提純研究,國內許多用戶稱之為無塔蒸餾(精餾)和無塔精製。2010年12月無塔精製設備面世,獲得了專利證書;2011年3-8月份,無塔蒸餾機和無塔精餾機問世,一項專利授權,一項專利通過初審。20%超低含量廢甲醇工業性提純試驗,在河南省商丘市某大型葯業生產公司使用成果,初餾份含量在86%;2011年8月,河南省安陽市某大型制葯公司,對82%廢乙醇工業性提純試驗,無塔蒸餾增程]機提純到98%,乙醇中醋酸甲酯含量0.1%,明顯優於該廠蒸餾塔0.26%分離效果。2010年代後,在眾多的有機溶劑提純上無塔蒸餾設備受到用戶高度重視。該所不僅致力與分離設備研發,而且努力把積累的豐富提純經驗,上升到理論高度探索。

蒸餾原理

概述

利用液體混合物中各組分揮發度的差別,使液體混合物部分汽化並隨之使蒸氣部分冷凝,從而實現其所含組分的分離。是一種屬於傳質分離的單元操作。廣泛應用於煉油、化工、輕工等領域。

其原理以分離雙組分混合液為例。將料液加熱使它部分汽化,易揮發組分在蒸氣中得到增濃,難揮發組分在剩餘液中也得到增濃,這在一定程度上實現了兩組分的分離。兩組分的揮發能力相差越大,則上述的增濃程度也越大。在工業精餾設備中,使部分汽化的液相與部分冷凝的氣相直接接觸,以進行汽液相際傳質,結果是氣相中的難揮發組分部分轉入液相,液相中的易揮發組分部分轉入氣相,也即同時實現了液相的部分汽化和汽相的部分冷凝。

液體的分子由於分子運動有從表面溢出的傾向。這種傾向隨著溫度的升高而增大。如果把液體置於密閉的真空體系中,液體分子繼續不斷地溢出而在液面上部形成蒸氣,最後使得分子由液體逸出的速度與分子由蒸氣中回到液體的速度相等,蒸氣保持一定的壓力。此時液面上的蒸氣達到飽和,稱為飽和蒸氣,它對液面所施的壓力稱為飽和蒸氣壓。實驗證明,液體的飽和蒸氣壓只與溫度有關,即液體在一定溫度下具有一定的蒸氣壓。這是指液體與它的蒸氣平衡時的壓力,與體系中液體和蒸氣的絕對量無關。

將液體加熱至沸騰,使液體變為蒸氣,然後使蒸氣冷卻再凝結為液體,這兩個過程的聯合操作稱為蒸餾。很明顯,蒸餾可將易揮發和不易揮發的物質分離開來,也可將沸點不同的液體混合物分離開來。但液體混合物各組分的沸點必須相差很大(至少30℃以上)才能得到較好的分離效果。在常壓下進行蒸餾時,由於大氣壓往往不是恰好為0.1MPa,因而嚴格說來,應對觀察到的沸點加上校正值,但由於偏差一般都很小,即使大氣壓相差2.7KPa,這項校正值也不過±1℃左右,因此可以忽略不計。

暴沸

將盛有液體的燒瓶放在石棉網上,下面用煤氣燈加熱,在液體底部和玻璃受熱的接觸面上就有蒸氣的氣泡形成。溶解在液體內的空氣或以薄膜形式吸附在瓶壁上的空氣有助於這種氣泡的形成,玻璃的粗糙面也起促進作用。這樣的小氣泡(稱為氣化中心)即可作為大的蒸氣氣泡的核心。在沸點時,液體釋放大量蒸氣至小氣泡中,待氣泡的總壓力增加到超過大氣壓,並足夠克服由於液柱所產生的壓力時,蒸氣的氣泡就上升溢出液面。因此,假如在液體中有許多小空氣或其它的氣化中心時,液體就可平穩地沸騰,如果液體中幾乎不存在空氣,瓶壁又非常潔凈光滑,形成氣泡就非常困難。這樣加熱時,液體的溫度可能上升到超過沸點很多而不沸騰,這種現象稱為“過熱”。一旦有一個氣泡形成,由於液體在此溫度時的蒸氣壓遠遠超過大氣壓和液柱壓力之和,因此上升的氣泡增大得非常快,甚至將液體沖溢出瓶外,這種不正常沸騰的現象稱為“暴沸”。因此在加熱前應加入助沸物以期引入氣化中心,保證沸騰平穩。助沸物一般是表面疏鬆多孔、吸附有空氣的物體,如碎瓷片、沸石等。另外也可用幾根一端封閉的毛細管以引入氣化中心(注意毛細管有足夠的長度,使其上端可擱在蒸餾瓶的頸部,開口的一端朝下)。在任何情況下,切忌將助沸物加至已受熱接近沸騰的液體中,否則常因突然放出大量蒸氣而將大量液體從蒸餾瓶口噴出造成危險。如果加熱前忘了加入助沸物,補加時必須先移去熱源,待加熱液體冷至沸點以下後方可加入。如果沸騰中途停止過,則在重新加熱前應加入新的助沸物。因為起初加入的助沸物在加熱時逐出了部分空氣,再冷卻時吸附了液體,因而可能已經失效。另外,如果採用浴液間接加熱,保持浴溫不要超過蒸餾液沸點20℃,這種加熱方式不但可以大大減少瓶內蒸餾液中各部分之間的溫差,而且可使蒸氣的氣泡不單從燒瓶的底部上升,也可沿著液體的邊沿上升,因而可大大減少過熱的可能。

過程

純粹的液體有機化合物在一定的壓力下具有一定的沸點,但是具有固定沸點的液體不一定都是純粹的化合物,因為某些有機化合物常和其它組分形成二元或三元共沸混和物,它們也有一定的沸點。不純物質的沸點則要取決於雜質的物理性質以及它和純物質間的相互作用。假如雜質是不揮發的,則溶液的沸點比純物質的沸點略有提高(但在蒸餾時,實際上測量的並不是不純溶液的沸點,而是逸出蒸氣與其冷凝平衡時的溫度,即是餾出液的沸點而不是瓶中蒸餾液的沸點)。若雜質是揮發性的,則蒸餾時液體的沸點會逐漸升高或者由於兩種或多種物質組成了共沸點混合物,在蒸餾過程中溫度可保持不變,停留在某一范圍內。因此,沸點的恆定,並不意味著它是純粹的化合物。

蒸餾沸點差別較大的混合液體時,沸點較低者先蒸出,沸點較高的隨後蒸出,不揮發的留在蒸餾器內,這樣,可達到分離和提純的目的。故蒸餾是分離和提純液態化合物常用的方法之一,是重要的基本操作,必須熟練掌握。但在蒸餾沸點比較接近的混合物時,各種物質的蒸氣將同時蒸出,只不過低沸點的多一些,故難於達到分離和提純的目的,只好藉助於分餾。純液態化合物在蒸餾過程中沸程范圍很小(0.5~1℃)。所以,蒸餾可以利用來測定沸點。用蒸餾法測定沸點的方法為常量法,此法樣品用量較大,要10 mL以上,若樣品不多時,應採用微量法。

分餾

定義:分餾是利用分餾柱將多次氣化—冷凝過程在一次操作中完成的方法。因此,分餾實際上是多次蒸餾。它更適合於分離提純沸點相差不大的液體有機混合物。

進行分餾的必要性:(1)蒸餾分離不徹底。(2)多次蒸餾操作繁瑣,費時,浪費極大。

混合液沸騰後蒸氣進入分餾柱中被部分冷凝,冷凝液在下降途中與繼續上升的 蒸氣接觸,二者進行熱交換,蒸汽中高沸點組分被冷凝,低沸點組分仍呈蒸氣上升,而冷凝液中低沸點組分受熱氣化,高沸點組分仍呈液態下降。結果是上升的蒸汽中低沸點組分增多,下降的冷凝液中高沸點組分增多。如此經過多次熱交換,就相當於連續多次的普通蒸餾。以致低沸點組分的蒸氣不斷上升,而被蒸餾出來;高沸點組分則不斷流回蒸餾瓶中,從而將它們分離。

⑤ 某工廠廢液經測定得知主要含有乙醇,其中還有丙酮、乙酸和乙酸乙酯.根據下表中各物質的性質,按下列步驟

某工廠廢液經測定得知主要含有乙醇,其中還有丙酮、乙酸和乙酸乙酯
①向廢液中加入燒鹼溶液,調整溶液的pH=10,將乙酸轉化為醋酸鈉,乙酸乙酯變化為乙酸鈉和乙醇;
②將混合液放入蒸餾燒瓶中緩緩加熱,控制物質沸點;
③收集溫度在75℃~80℃時的餾出物,結合沸點可知是收集乙醇;
④待蒸餾燒瓶中的殘液冷卻後向其中加濃硫酸(過量),然後再進行蒸餾,回收餾出物為乙酸,殘液中溶質為硫酸鈉;
(1)加入燒鹼使溶液的pH=10的目的是將乙酸轉化為乙酸鈉,使乙酸乙酯在轉化為乙酸鈉和乙醇;
故答案為:將乙酸轉化為乙酸鈉,使乙酸乙酯在轉化為乙酸鈉和乙醇;
(2)在蒸餾時,溫度計的位置是溫度計的液泡與蒸餾燒瓶支管口相平測定流出氣體的沸點,溫度計的作用是判斷餾分的成分;
故答案為:溫度計的液泡與蒸餾燒瓶支管口相平,判斷餾分的成分;
(3)依據圖表中物質沸點分析可知,在70℃~85℃時餾出物的主要成分是乙醇;
故答案為:乙醇;
(4)在步驟④中加入過量濃硫酸的目的是和醋酸鈉反應生成醋酸,方程式為2CH3COONa+H2SO4-→Na2SO4+2CH3COOH,然後再進行蒸餾,回收餾出物得到乙酸,此實驗中採用濃硫酸而不用稀硫酸的原因是縮短蒸餾時間或節省能源;
故答案為:2CH3COONa+H2SO4-→Na2SO4+2CH3COOH,縮短蒸餾時間或節省能源;
(5)當最後蒸餾的溫度控制在85℃~125℃一段時間後,耐酸蒸餾器殘液中溶質的主要成分依據反應2CH3COONa+H2SO4-→Na2SO4+2CH3COOH可知,得到殘液中溶質的主要成分是硫酸鈉,Na2SO4
故答案為:Na2SO4

⑥ 萃取與蒸餾相比,有什麼優點

很明顯的,節省能源嘛
其實這兩個最好別放一起比較,因為萃取是分離兩個不互溶物質,而蒸餾是分離兩個互溶物質

⑦ 不蒸餾的葡萄酒有什麼問題

不蒸餾的葡萄酒酒精度數通常在7-18%(VOL)。

葡萄酒不需要經過蒸餾,也不需要在發酵之前對原料進行糖化處理,其酒精含量一般在8到20度。配製葡萄酒也稱果露酒,是用果汁加酒精調配而成。

簡介:

蒸餾酒的原料一般是富含天然糖分或容易轉化為糖的澱粉等物質。如蜂蜜、甘蔗、甜菜、水果和玉米、高粱、稻米、麥類馬鈴薯等。

糖和澱粉經酵母發酵後產生酒精,利用酒精的沸點(78.5℃)和水的沸點(100℃)不同,將原發酵液加熱至兩者沸點之間,就可從中蒸出和收集到酒精成分和香味物質。

用特製的蒸餾器將酒液,酒醪或酒醅加熱,由於它們所含的各種物質的揮發性不同,在加熱蒸餾時,在蒸汽中和酒液中,各種物質的相對含量就有所不同。酒精(乙醇)較易揮發,則加熱後產生的蒸汽中含有的酒精濃度增加,而酒液或酒醪中酒精濃度就下降。

收集酒氣並經過冷卻,得到的酒液雖然無色,氣味卻辛辣濃烈。其酒度比原酒液的酒度要高得多,一般的釀造酒,酒度低於20%。蒸餾酒則可高達60%以上。我國的蒸餾酒主要是用穀物原料釀造後經蒸餾得到的。

閱讀全文

與廢乙醇的蒸餾與沸點的測定相關的資料

熱點內容
便宜的純凈水和貴的什麼區別 瀏覽:385
雙級反滲透出水水質指標 瀏覽:26
美的的進口反滲透膜 瀏覽:448
純水機什麼時候再次制水 瀏覽:898
奧琳德凈水機多少瓦 瀏覽:589
地埋污水處理系統優化 瀏覽:467
美的線管飲水機不上水怎麼回事 瀏覽:428
華僑城純水岸東湖二期怎麼樣 瀏覽:314
超濾設備哪家最好 瀏覽:875
萬家樂電熱水器除水垢 瀏覽:92
尼龍紗布過濾 瀏覽:177
阿里斯頓熱水器沒有污水 瀏覽:648
小米水壺水垢嚴重 瀏覽:72
污水處理運營維保招標公告 瀏覽:211
6m的煙斗濾芯哪裡有賣 瀏覽:543
全自動前置凈水器怎麼清洗 瀏覽:439
鹽酸除垢的機理 瀏覽:559
換下來的濾芯還可以干什麼用 瀏覽:556
凈水機的濾芯能用多少年 瀏覽:105
杭州通污水井 瀏覽:521